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Modern computing systems are becoming increasingly vulnerable to timing

channel attacks that leak confidential information through the timing of mi-

croarchitectural events. Many timing channel attacks are caused by the inter-

ference between different programs in the shared resources of a multi-core pro-

cessor. For example, an attacker program’s cache lines can be evicted by a victim

program, which allows the attacker to infer secret information about the victim.

Timing channel attacks pose serious threats to contemporary computing sys-

tems because they can bypass traditional defense mechanisms such as access

control. Previous studies have even demonstrated a practical timing channel

attack to recover the keystrokes of a user in the commercial Amazon EC2 cloud.

In this thesis, we explored new timing channel attacks and developed timing

channel protection schemes for some of the hardware resources in a multi-core

processor. Specifically, we discovered new timing channel attacks in the shared

on-chip networks and memory controllers. We proposed multiple protection

mechanisms for on-chip networks, caches and memory controllers. Our protec-

tion schemes cover three high-level approaches: bi-directional protections, uni-

directional protections and protections that trade off security for performance.

We evaluate our protection schemes and show that the proposed schemes are

effective against timing channel attacks while achieving performance improve-

ments over previous protection schemes. Finally, we implemented some of the



protection mechanisms in RTL and used SecVerilog to verify the information

flow control in hardware. The results show that the protection mechanisms in-

deed remove timing channels at the gate level.
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CHAPTER 1

INTRODUCTION

Multi-core processors are widely used in modern computing systems such

as cloud servers and mobile devices. In the architecture of multi-core proces-

sors, some hardware resources are often shared by multiple cores to improve

hardware efficiency. Each core can run a different application and contends for

the shared resources such as caches, on-chip networks and memory. When com-

peting for the shared hardware resources, applications can cause interference to

each other, hence affecting individual program’s execution time. This timing

interference, unfortunately, can sometimes lead to timing channels, which are

a type of an information channel that leaks confidential information through

timing. Attacker applications can exploit timing channels to launch attacks to

steal confidential information from victim applications. For example, previ-

ous work [RTSS09] has demonstrated a timing channel attack that reveals the

keystrokes typed by a user through shared data caches on commercial Amazon

EC2 servers.

Timing channel attacks introduce serious threats to modern computing sys-

tems. In cloud computing, a user’s applications are scheduled to run con-

currently with other applications, which could be malicious and try to infer

confidential information that belongs to the user through timing channel at-

tacks. A similar problem exists in mobile devices today. If a user downloads an

application that contains malware, this malicious application might run con-

currently with the user’s banking application, stealing confidential informa-

tion such as passwords. Timing channel attacks are hard to defend against

because they do not rely on physical access to the system and can bypass to-

1



day’s security defense mechanisms such as access control. Even worse, a recent

study [HKR+15] shows that timing channel attacks can also achieve a high leak-

age rate (500Kbps).

There exists extensive work on various hardware timing channel attacks and

their countermeasures. However, most of the previous work focuses on cache

timing channels. In this thesis, we explore possible timing channel attacks and

their countermeasures in shared hardware resources including not only caches,

but also on-chip networks and memory controllers. We find all these shared re-

sources are vulnerable to timing channel attacks, and we develop efficient pro-

tection schemes that defeat these timing channel attacks. We further improve

the performance of our protection schemes by introducing uni-directional pro-

tection when programs have asymmetric security requirements, or by trading

off security for performance. Finally, we develop two processors in RTL and

formally verify that both designs are free of timing channels using a tool called

SecVerilog [ZWSM15].

1.1 A Case Study on Realistic Timing Channel Attacks

Previous work have proposed numerous timing channel attacks that exploit

software or hardware vulnerabilities. Although many of these attacks were

demonstrated in a confined environment, quite a few studies conducted their

attacks in realistic environment settings including mobile devices and commer-

cial VMs in cloud computing. These realistic timing channel attacks provide

strong evidence that timing channel attacks are not only theoretically possible,

but also practically viable as a way to leak confidential information. One notable

work is a successful cache timing channel attack demonstrated on Amazon’s
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EC2 cloud computing platform by Ristenpart et al. [RTSS09]. This section re-

views Ristenpart’s attack in more detail and also discusses other realistic timing

channel attacks.

1.1.1 Ristenpart’s Attack on Amazon’s EC2

As the cloud computing infrastructure continues to quickly evolve, more and

more entities begin to export their computations and data into the cloud. While

cloud computing brings several appealing benefits including economies of scale

and dynamic provisioning, it also introduces new security threats as the com-

putation and data of different entities (possibly rivals) could share the same

physical machine. Traditional virtualization techniques (virtual machines) pro-

vides some degree of isolation between different entities, but does not offer com-

plete non-interference because attacks (e.g., side-channel attacks) can bypass the

boundaries between VMs. By far the best known example of a third-party com-

pute cloud is Amazon’s EC2, which is the target of the timing channel attack

demonstrated by Ristenpart et al. [RTSS09]

The proposed attack requires three steps to succeed. First, the attacker finds

out the location of the victim VM in the cloud infrastructure to narrow down the

search space. Second, the attacker tries to gain co-residence with the victim VM

by spawning a set of VMs and checking for co-residence. Co-residence means

the attacker VM and the victim VM reside on the same physical machine, which

is the basis for many timing channel attacks. Lastly, the attacker VM extracts

confidential information about the victim VM via a cross-VM attack, taking the
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form of timing channel attacks in this case. The three steps are described in

more detail below.

Determining the Location of the Victim VM

When a user launches a VM, the VM is assigned to a single physical machine

within the EC2 network for its lifetime. At the time of this attack being pro-

posed, Amazon’s machines were located in two regions, one in the United States

and the other in Europe. Each region contains three availability zones. A user

can specify a region and an availability zone to launch his or her VMs. Mean-

while, a user can also specify an ”instance type” of the VM. Different instance

types provide different computational power, memory and persistent storage.

There were five Linux instance types, referred to as ’m1.small’, ’c1.medium’,

’m1.large’, ’m1.xlarge’, and ’c1.xlarge’.

In this step of the proposed timing channel attack, the attacker tries to de-

termine the location (region and availability zone) of the victim VM in order

to narrow down the search space of gaining co-residence. To achieve this goal,

Ristenpart et al. did a survey study on instance mapping in Amazon EC2. They

iteratively launched 20 VMs for each of the 15 availability zone/instance pairs

and studied the relationship between the internal IP address of a VM and its

zone or instance type.

Figure 1.1 shows the internal IP address mapping regarding different avail-

ability zones. The results suggest that the Amazon EC2 internal IP address

is cleanly partitioned between availability zones. For example, samples from

Zone 3 were assigned addresses within the range between 10.252.0.0/16 and
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Figure 1.1: Internal IP address mapping regarding availability
zones [RTSS09].

Figure 1.2: Internal IP address mapping regarding instance
types [RTSS09].

10.253.0.0/16. While it is not surprising that availability zones show disjoint

IP assignment, the experiments also shows a VM’s instance type affects its IP

address with considerable regularity. Figure 1.2 shows the internal IP address

mapping regarding different instance types. This mapping study suggests that

all /24 addresses between two consecutive Dom0 /24 addresses inherit the for-

mer’s associated instance type. Here, Dom0 is a privileged virtual machine

that is used to manage guest images, their physical resource provisioning, and

any access control rights in Xen hypervisor [BDF+03]. For example, if one Dom0

VM is associated with m1.small with an IP address of 10.254.8.0/24 and the next

Dom0 VM is associated with c1.medium with an IP address of 10.254.11.0/24,

then any VMs that have IPs in prefixes 10.254.9.0/24 and 10.254.10.0/24 are as-

sociated with m1.small instance type.
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The derived IP address mapping rules can dramatically reduce the number

of instances needed before a co-resident placement is achieved. Basically, an

attacker can enumerate public EC2-based web servers using external probes and

translate responsive public IPs to internal IPs via DNS queries within EC2. With

the internal IP address of a victim VM and the derived mapping rules described

above, the attacker can figure out the availability zone and instance type of the

victim VM. The attacker can then launch its VMs of the same instance type in

the same availability zone to increase the chance of gaining co-residence.

Gaining Co-Residence with Victim VMs

Ristenpart et al. proposed several easy-to-implement network-based co-

residence checks. Namely, instances are likely co-resident if they pass one of

the checks listed below.

• Matching Dom0 IP address

• Small packet round-trip times

• Numerically close internal IP addresses (e.g., within 7)

As a matter of fact, an instance’s network packet’s first hop is always the

Dom0 privileged VM. For the first check, an attacker can determine its own

Dom0 IP from the first hop of any packet, and determine the Dom0 IP of another

instance by performing a TCP SYN traceroute to the instance and inspecting the

last hop. The second check is based on the fact that the packet round-trip times

are usually smaller when two VMs are co-resident. The basis of the third check

is that the same Dom0 IP will be shared by instances with a continuous sequence
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of internal IP addresses. These checks were verified by comparing to the results

of a hard-disk-based covert channel between EC2 instances and showed almost

100% accuracy.

Two strategies were proposed to gain co-residence with victim VMs. The

brute-force strategy has an attacker launch many instances over time and tar-

gets on a set of victim VMs. In this strategy, the attacker repeatedly runs probe

instances of the target type in the target zone, using the information gathered

from the first step. Each probe instance performs the co-residence checks to de-

termine if it is co-resident with any of the victim VMs. 1785 probe instances

were launched in their experiments, which results in co-residency with 141 vic-

tim VMs out of 1686 target victims. Thus this strategy achieved 8.4% coverage

of the target victim set. The second strategy exploits placement locality in Ama-

zon EC2. Basically, if two instances run sequentially (the first terminated be-

fore launching the second) or run at around the same time, they are likely to

be assigned to the same machine. In this attack strategy, the attacker detects

when a victim VM is launched, and then engages in instance flooding: running

as many instances in parallel as possible in the same availability zone and of

the same instance type. Because of the placement locality exhibited by the EC2

placement algorithm, the attacker is able to achieve co-residence with a target

victim VM 40% of the time (launching just 20 probe instances)—a very high suc-

cessful rate. The assumption that the attacker can detect when a victim VM is

launched is based on that an attacker can monitor a server’s state by constant

network probing. More interestingly, an attacker might be able to trigger new

victim instances due to the use of auto scaling systems. The success of gaining

co-residence with victim VMs was even demonstrated on commercial instances

from companies including RightScale and rPath.
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Carrying Out Timing Channel Attacks

Once an attacker places its VM on the same physical machine as a victim VM,

he or she can extract confidential information (e.g., cryptographic keys) from

the victim VM through various timing channel attacks. Ristenpart et al. demon-

strated a cache-based timing channel attack that allows an attacker to measure

the cache usage of a victim VM that shares the same cache with the attacker

VM. The attack can also be used to estimate the traffic rates of a co-resident web

server, which may correlate with confidential information. Both attacks were

demonstrated in the Amazon EC2 environment, which represents the realistic

environment settings in cloud computing. Although the demonstrated attacks

were relatively simple, the main contribution of this work is that it shows a

practical attack step by step in the real world. Since attackers can easily gain

co-residence with victim VMs, various timing channel attacks that are based

on hardware resource sharing (including the ones that will be described in this

thesis) become viable to the attackers.

1.1.2 Other Realistic Timing Channel Attacks

As an extension to Ristenpart’s attacks [RTSS09], Zhang et al. [ZJRR12] pro-

posed a more fine-grained cache-based timing channel attack between VMs that

share the same physical machine. In this attack, the attacker is able to probe the

cache very frequently by abusing interprocess interrupts (IPIs), and filter out the

noise due to hardware and software features. The fine-grained cache probing

allows the attacker to extract a private ElGamal decryption key [EG85] from a

co-resident victim VM. The attack was demonstrated on an Intel Core 2 Q9650
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processor. It shows that probing over the course of just a few hours can provide

the attacker enough information to reconstruct the victim’s 457-bit private key

with high accuracy—fewer than 10,000 possible keys need to be searched to find

the right one!

Another line of work on timing channel attacks exploits timing difference

in write accesses on deduplicated memory pages. Memory deduplication is

a technique to reduce the memory footprint of a system by combining identi-

cal pages. However, write access to these deduplicated pages leads to a page

fault, which takes much longer to process than write access to normal pages.

This timing difference serves as the basis for several timing channel attacks.

Suzaki et al. [SIYA11] proposed an attack that can determine whether specific

applications are running in a co-located virtual machine in the cloud. Owen

et al. [OW11] demonstrated that it is possible to efficiently fingerprint operat-

ing systems of co-resident virtual machines using memory deduplication at-

tacks. Attackers can use OS fingerprinting to learn the type and version of an

operating system so that they can launch attacks that are specific to the target

OS. Gruss et al. [GBM15] presented a page deduplication attack in sandboxed

JavaScript, which allows a remote attacker to collect private information such

as whether a program or website is currently opened by a user. The proposed

countermeasure was to disable page deduplication completely.

Many of the timing channel attacks take the form of passive attacks, which

means the attacker can gain information about the victim system without notice-

ably affecting the behavior of the target system [ZF05]. Passive attacks are quite

difficult to detect, and they can result in hazards to security and privacy. Be-

cause of these potential attacks, many companies refuse to outsource their com-
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putational tasks to public computing infrastructures. According to a recent IDCI

survey, 74% of IT executives and CIOs cited security as the top challenge pre-

venting their adoption of cloud services [SK11b]. It is thus important to build a

secure computing environment that can defeat various kinds of attacks, includ-

ing timing channel attacks. However, current countermeasures against timing

channel attacks suffer from either inflexibility or high performance overhead,

which make them hard to deploy in practice. As a result, timing channel attacks

remain to be a continuing threat in computing systems in the near future. This

thesis explores some flexible and efficient timing channel protection schemes as

a first step towards building systems that are invulnerable to timing channel

attacks.

1.2 Threat Model

To defend against timing channel attacks, we first describe our threat model,

which defines security objectives and identifies vulnerabilities and threats. On

a high level, our threat model assumes a multi-core processor as the target plat-

form and a hierarchical security policy.

1.2.1 Baseline Architecture

The timing channel attacks and protection schemes in this thesis target a multi-

core processor, as shown in Figure 1.3. The processor has multiple in-order

or out-of-order cores. All cores share a large last-level cache (LLC), which is

connected to the private caches through on-chip networks. The networks can
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Figure 1.3: Baseline architecture.

be any topology that is applicable, such as bus, ring or mesh networks. The

LLC is connected to a memory controller, which handles memory requests and

responses.

In this multi-core architecture, three major hardware components (on-chip

networks, LLC, memory controller) are shared among all the cores. Since each

core can run a different application, a malicious application can steal informa-

tion from another application through timing channel in these shared compo-

nents. This thesis focuses on discovering possible timing channel attacks and

developing their countermeasures in these shared components.

1.2.2 Hierarchical Security Policy

Our threat model considers timing channel protection among security domains.

A security domain is defined as a set of software modules (VMs, processes,

threads) that do not need timing isolation among them. As an example, con-

sider the cloud computing platform in Figure 1.4. A security domain may con-

tain multiple VMs if these VMs belong to the same user. The hypervisor/OS is
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Figure 1.4: Security domains in cloud computing.

Tier 1

Tier 2

Tier N

Security Domain

Figure 1.5: Hierarchical security policy.

responsible for scheduling these VMs to the underlying processor and tagging

each VM with the correct security domain ID.

Different security domains may pose different security requirements. This

thesis assumes a hierarchical security policy that defines the relationship be-

tween security domains, as shown in Figure 1.5. There are N security tiers, and

each tier contains an arbitrary number of security domains. The security policy

follows the rule below:
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Figure 1.6: Common security policies.

• Information is allowed to flow from security domain A to security domain

B if and only if A ∈ Tier i, B ∈ Tier j and i < j.

The security policy has two implications. First, information may not flow

between two security domains in the same security tier. This is useful for the

use case where multiple mutually distrusting high security applications (e.g.,

banking, medical) are running concurrently. Second, information is allowed to

flow from a lower security tier to a higher security tier. This represents the use

case where low security applications (e.g., simple games) are running together

with high security applications. Information is allowed to flow from low secu-

rity applications to high security applications, but not the other way around.

The security policy is general enough to support common use cases. For

example, a government or military database system usually employs the multi-

level security (MLS) policy, which consists of four hierarchical levels. This MLS

policy can be represented in our security policy by four security tiers with each

tier containing one security domain, as shown in Figure 1.6(a). The security

policy can also represent the mobile scenario with two security tiers, as shown

in Figure 1.6(b). Tier 1 only has one security domain L, which contains pub-
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lic applications. Tier 2 has two security domains, with each security domain

containing a different high security application.

1.2.3 Attack Assumptions

Timing channel attacks can take many different forms. In general, timing chan-

nel attacks can be divided into software-based attacks and hardware-based

attacks. Software-based attacks exploit the vulnerabilities in software, while

hardware-based attacks rely on the microarchitectural features of a processor.

This thesis focuses on defending against hardware-based timing channel at-

tacks. More specifically, we consider attacks that exploit interference in shared

hardware resources between concurrently running programs. Hardware tim-

ing channels within a program or caused by context switches are out of the

scope of this thesis. As an exception, a couple of secure cache designs are pro-

posed to defeat cache timing channels within a program in Section 3.6.

Both unintentional and intentional information leaks are considered in this

threat model. Thus, I aim to prevent both side-channel and covert-channel at-

tacks. The goal of a side-channel attack is to gain access to the secret information

possessed by the victim, which does not intend to leak the secret. The attacker

can intentionally create interference in the shared hardware resources and make

timing measurements on its own operations. The attacker then tries to correlate

the timing information with the secret. In a covert-channel attack, the attacker

already possesses a secret, but is limited in how it can share this secret. For

example, a malicious 3rd party web application may try to leak a user’s data

when the cloud infrastructure restricts its network connections so that it cannot
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directly communicate with malicious servers. The attacker can try to bypass

such restrictions using a timing channel to communicate with a co-resident VM

whose network connection is not restricted. The attacker can communicate the

secret by deliberately modifying its workload to cause timing variations to the

colluding attack program’s execution.

The threat model assumes a strong attacker. The attacker can generate any

pattern of cache accesses as well as memory requests, which gives the attacker

the capability to create interference that favors timing channel attacks in the

shared resources. Another assumption is that the attacker is able to measure the

exact timing of its own memory accesses so that it can analyze the timing infor-

mation with high accuracy. On the other hand, the hypervisor/OS is assumed

to be trusted and not compromised by the attacker. The hardware counters are

controlled by the hypervisor/OS and are not accessible by the attackers. For

most of this thesis except for Section 3.6, we assume different security domains

do not share data that can be both read and written. However, different secu-

rity domains are allowed to share read-only data (e.g., program code, shared

library.).

1.3 Limitations of Software-Only Solutions

One approach to protect against timing channel attacks is to write or rewrite

software in a way that defeats known timing channel vulnerabilities. How-

ever, this approach has several limitations. First, software solutions are often

designed to deal with only specific timing channel attacks. The software writ-

ten with a timing channel protection method is still vulnerable to new timing
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channels that have not yet been revealed. For example, the Montgomery mul-

tiplication [Mon85] and Chinese Remainder Theorem implementation of Diffie-

Hellman [DH06] or RSA [RSA78] were believed to defeat the timing attack de-

signed by Kocher [Koc96a]. However, this implementation is shown to be prone

to a later attack proposed by Brumley et al. [BB03]. The second limitation of soft-

ware solutions is the lack of precise control on execution time. To illustrate the

idea, consider a simple code snippet below.

1 Victim :

2 i n t s e c r e t , h1 , h2 , l 1 ;

3 i n i t ( s e c r e t , h1 , h2 , l 1 ) ;

4

5 i f ( s e c r e t )

6 h1 = l 1

7

8 h2 = h1

If the value of secret is 1, line 6 is executed. Otherwise, line 6 is skipped.

The timing difference reveals the value of secret—a timing channel. One naive

solution to eliminate the timing channel is adding dummy operations to balance

the control flow, as shown below.
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1 Victim :

2 i n t s e c r e t , h1 , h2 , l1 , l 2 ;

3 i n i t ( s e c r e t , h1 , h2 , l1 , l 2 ) ;

4

5 i f ( s e c r e t )

6 h1 = l 1

7 e l s e

8 l 2 = l 1

9

10 h2 = h1

At first glance, this software fix seems to work because both branches of the

i f statement have the same number of instructions. However, it ignores the

underlying hardware features such as caches. If the value of secret is 1, h1 is

brought into a cache, hence the execution time of line 10 is short because of a

cache hit. If the value of secret is 0, the access to h1 in line 10 becomes a cache

miss. The timing difference between a cache hit and a cache miss represents a

timing channel that can reveal the value of secret.

The timing channel shown in the example above is caused by the cache

interference between different instructions within the same program. Timing

channels may also be introduced by interferences between different processes

in shared hardware resources. For example, a victim program’s cache accesses

may evict cache lines of an attacker in a shared LLC, which allows the attacker to

infer confidential information about the victim. It is also possible that a victim’s

memory requests delay the memory requests of an attacker when competing for

the same memory channel, resulting in illegal information leakage. Many soft-
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ware solutions are prone to similar timing channels because software cannot

strictly control the execution time of each instruction.

Software-only solutions are insufficient to defend against these micro-

architectural timing channel attacks due to the limitations discussed above. Pro-

tection mechanisms must also be implemented in hardware to completely elim-

inate the sources of timing channels. To this purpose, my thesis will focus on

designing efficient timing channel protection mechanisms in hardware.

1.4 Thesis Contribution and Organization

This thesis proposes timing channel protection mechanisms for shared hard-

ware resources in a multi-core processor. The goal of these protections is to

defend against timing channel attacks between concurrently running programs

while minimizing the performance overhead introduced by the protection. De-

pending on the specific security policy, timing channel protections in this thesis

are divided into three approaches.

If two security domains are mutually distrusting (i.e., they are in the same

security tier), the protection scheme needs to ensure that information does not

flow in either direction. This kind of protection is called bi-directional protec-

tion. Bi-directional protection requires complete noninterference between secu-

rity domains, which poses restrictions on how the shared resources can be used

by different security domains and can significantly degrade performance.

On the other hand, if two security domains are not in the same security tier

(e.g., L and H1 in Figure 1.6(b)), the protection scheme only needs to guarantee

18



the information does not flow from the higher security tier to the lower one. This

kind of protection is called uni-directional protection. Uni-directional protec-

tion allows the runtime information from the security domain in a lower secu-

rity tier to be used to decide how the hardware resources are allocated to higher

tiers. With the help of this runtime information, uni-directional protection can

generally provide more efficient resource allocations or scheduling decisions

compared to bi-directional protection, as will be shown in later chapters.

Both bi-directional and uni-directional protections prevent any illegal infor-

mation flows according to the security policy, i.e., they enforce zero information

leakage. However, users sometimes are willing to sacrifice security for better

performance. A third approach to defend against timing channel attacks allows

controllable amount of information leakage between security domains while

trying to maximizing the system performance. This approach enables a trade-

off between security and performance, which allows the users to tune the per-

formance of their systems based on the amount of information leakage they can

tolerate.

In the rest of this thesis, all three design approaches are used to develop effi-

cient timing channel protection schemes for the shared hardware resources in a

multi-core processor. The primary contributions of this thesis are summarized

below:

• We construct a timing channel attack against on-chip networks. We pro-

pose a bi-directional protection scheme called Temporal Network Parti-

tioning (TNP), as well as a uni-directional protection scheme called Re-

verse Priority with Static Limit (RPSL). Both schemes eliminate the timing

channels in on-chip networks.
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• We identify timing channel attacks against caches and propose several

protection schemes. We found that timing channel attacks are possible

through cache coherence protocols and defeat the attacks with simple

time-division multiplexing mechanisms. We develop a secure dynamic

cache partitioning scheme (SecDCP) that defeats cache timing channel at-

tacks with uni-directional protection. SecDCP improves performance by

up to 43% and by an average of 12.5% over static cache partitioning. Fur-

thermore, we propose a secure cache design based on a high-associativity

cache (ZCache [SK10]) to support more security domains. We also find

a possible attack caused by the relocation process of ZCache. To defend

against timing channels within a program, we propose a couple of secure

cache designs (DirtyCache, RelCache) that supports software security la-

bels.

• We construct timing channel attacks against shared memory controllers.

We propose two completely secure memory controller designs (TP and

SecMC-NI). SecMC-NI improves the performance of the best known

scheme by 45%. To further improve the performance, we also propose

a memory controller that enables a tradeoff between performance and se-

curity (SecMC-Bound).

• We implement some of the protection mechanisms in RTL. Two se-

cure processors are developed and verified using a tool called SecVer-

ilog [ZWSM15]. The results show that the protection mechanisms indeed

remove timing channels at the gate level.

Table 1.1 summarizes the contributions of this thesis. The rest of the the-

sis is organized as follows. Chapter 2 describes our findings on new timing
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Hardware Bi-directional
Protection

Uni-directional
Protection

Performance
and Security

Tradeoff
On-Chip

Networks TNP RPSL

Caches ZCache-Based
Protection

SecDCP
DirtyCache
RelCache

Memory
Controllers

TP
SecMC-NI SecMC-Bound

Table 1.1: Primary contributions of this thesis.

channel attacks against on-chip networks and our protection schemes using bi-

directional and uni-directional protection. Chapter 3 discusses previous timing

channel attacks on caches and introduces our secure cache designs. Chapter 4

presents our studies on new memory controller timing channel attacks and pro-

tection mechanisms. Chapter 5 discusses our experience of designing two se-

cure processors in RTL and verifying their timing channel security using SecVer-

ilog. Finally, Chapter 6 summarizes related work and Chapter 7 concludes the

thesis and discusses future directions.
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CHAPTER 2

ON-CHIP NETWORKS

This chapter discusses timing channel attacks and protection schemes for

shared on-chip networks. Section 2.1 describes timing channel attacks we found

in shared on-chip networks. Section 2.2 describes a bi-directional protection

scheme based on Temporal Network Partitioning (TNP). We then propose a

more efficient uni-directional protection scheme called Reverse Priority with

Static Limits (RPSL) in Section 2.3.

2.1 Attacks

2.1.1 On-chip Network Interference

On-chip network interference happens when network flows from multiple ap-

plications contend for shared resources such as links and buffers. As an ex-

ample, Figure 2.1(a) illustrates a simple scenario where two flows, Flow A and

Flow B, share a common link between Node 1 and 2 on a typical 1-D mesh with

4 virtual channels. Because only one flow can use the link in each cycle, the net-

work performance of one flow, such as throughput and latency, can be affected

by the other flow’s demand. Figure 2.1(b) and Figure 2.1(c) show the through-

put of Flow A and B respectively as a function of the other flow’s injection rate,

using a cycle-level network simulator called Darsim [LSC+10]. In the experi-

ments, we fixed one flow’s injection rate (0.2, 0.5, or 1 flit/cycle) and measured

its delivered throughput while varying the other flow’s injection rate from 0 to 1

flit/cycle. As shown in the figure, when a flow has a low injection rate (0.2 flit/-
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(a) Network and flow setup.

(b) A’s throughput, varying B’s de-
mand.

(c) B’s throughput, varying A’s de-
mand.

Figure 2.1: A simple network interference example.

cycle), its throughput is not significantly affected by the other flow’s injection

rate because a round-robin arbitration allocates roughly half of the link capacity

to each flow, which is enough to satisfy the demand. However, when the injec-

tion rate is high (1 flit/cycle), a flow’s throughput is highly dependent on the

other flow’s injection rate.

This network interference can be exploited as a vector to launch timing chan-

nel attacks. Essentially, an attacker can measure its run-time network through-

put or latency to infer what the victim is doing (e.g., the victim’s run-time net-

work demand) and further correlate this information with the victim’s secret.
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Figure 2.2: A side-channel attack on RSA.

2.1.2 An RSA Attack

As a more concret example, let us consider a timing channel attack on the RSA

[RSA78] algorithm, as shown in Figure 2.2. RSA is a public key cryptographic

algorithm that is widely used to secure electronic communications through en-

cryption or digital signatures. In one of the RSA implementations, the core al-

gorithm performs a modulo multiplication of two large numbers (often 1024 or

2048 bits) depending on each bit in a secret key, and is shown to be prone to tim-
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ing attacks [Koc96b]. Essentially, the algorithm examines each bit in the key and

only performs a multiplication if the bit is 1. In this example, the multiplication

operation in RSA causes additional network traffic to the memory controller 2

(MC2) due to cache conflicts. Meanwhile, the attack program runs a loop that

generates cache misses in every iteration, which also sends a lot of memory re-

quests to MC2. Packets from the RSA program and the attack program share

the output port of the crossbar and experience network interference. The exper-

iments were performed using McSim [ALOJ13], which provides timing mod-

els for a multi-core platform based on Intel’s Pin [LCM+05] tool. Figure 2.2(b)

shows the attack program’s execution time as the number of 1s in the RSA key

varies. As shown in the figure, the execution time has a direct correlation with

the fraction of 1s in the key. This result suggests that the attacker can roughly

estimate the number of 1s in the key based on its own execution time, which can

greatly reduce the search space to find the correct key.

2.2 Temporal Network Partitioning (TNP)

We propose to use temporal network partitioning to defend against timing

channel attacks for on-chip networks. In this protection scheme, we statically

allocate virtual channels (VCs) in each input port of a router to security do-

mains. We then use oblivious arbitration [DT04] to have security domains take

pre-determined turns to use the crossbars and links on a per-cycle basis. In the

case of two security domains, each security domain can be allocated with a half

of input virtual channels for exclusive use, and be allowed in the switch allo-

cation and link traversal in every other cycle. Effectively, this scheme statically

allocates a half of network resources to each domain. Since the allocation is
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completely static, the attacker is unable to infer any dynamic demand about the

victim using on-chip network interference.

TNP removes a timing channel in both directions between two security do-

mains. However, it can incur significant performance overheads because re-

source allocation cannot be dynamically adjusted to match the actual network

demands from each security domain. For example, if one security domain has

a high bandwidth demand while the other domain has a very low demand,

TNP only allows the domain with the high demand to use at most half of the

network bandwidth. To solve this problem, TNP can be configured to statically

allocate more bandwidth to the security domain with higher demand. However,

since the bandwidth allocation is always static, TNP cannot efficiently deal with

bursts or changes in different phases of an application.

Another bi-directional protection scheme called “SurfNoC” [WGO+13] has

been proposed recently to improve the performance of TNP. SurfNoC also

builds on top of time division multiplexing the network resources among differ-

ent security domains, but came up with a better scheduling of security domains

in each router, which allows a packet to be forwarded to the next router imme-

diately after it arrives. This smart scheduling avoids the unnecessary delay for

a packet to stay in the input buffers and wait for its turn.

2.3 Reverse Priority with Static Limit (RPSL)

TNP completely eliminates timing channels in on-chip networks, but can be

quite inefficient because all network resources are statically allocated. In this
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section, we propose a more efficient protection scheme that allows dynamic

scheduling of network traffic through uni-directional protection.

2.3.1 Priority-Based Arbitration

In the multi-level security model, one goal is to prevent information flows from

the high security domain to the low security domain. To achieve this goal with-

out statically allocating resources, we propose a priority-based arbitration for

resources such as the router crossbar. The basic idea is to assign a high priority

to low security traffic so that its behavior is not affected by high security traffic.

In other words, when flows from two security domains compete for the switch

traversal, the low security domain always wins, in both input port and out-

put port arbitrations in a separable allocator. To remove interference in buffers,

virtual channels are statically allocated to each security domain. This static al-

location removes head-of-line blocking between packets from different security

domains. In this way, the low security flows are not affected by the dynamic

demands of the high security flows. At the same time, this approach allows

a security domain to dynamically use more network resources when the other

domains have low demands.

2.3.2 Denial-of-Service Protection

While assigning a higher priority to a lower security domain can prevent il-

legal information leakage without statically restricting network resources, the

approach introduces an obvious concern for fairness. In fact, the strictly higher
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priority allows a malicious program in the low security domain to easily per-

form a Denial-of-Service (DoS) attack on high security programs by sending

packets at a high injection rate and occupying all network resources.

To prevent the DoS attack, we add an additional mechanism that monitors

and limits the traffic amount of the low security domain in a way that is inde-

pendent from the demand of the high security domain. This mechanism sets a

static limit per port on the number of flits that can be sent by the low security

domain over a certain time interval. Once the limit is reached, the port does not

send the low security flits until the next interval, allowing the high security flits

to go through. For example, if we set the limit to be 80 and time interval to be

100, it means the low security flows can at most send 80 flits every 100 cycles.

The remaining cycles can only be used by the high security flows. Note that

the static limit does not create a timing channel because it does not depend on

the high security traffic. Also, the limit can change over time for better perfor-

mance as long as it does not reflect sensitive information from the high security

domain.

2.3.3 Multiple Security Domains

It is relatively straightforward to extend the protection scheme to support more

than two security domains. Suppose we have N security domains, and we rank

them based on their security tiers. The flows from the lowest security domain

get the highest priority to use the router crossbar and vice versa. To extend to

N security domains, RPSL needs N-1 static limits to avoid DoS attacks, one for

each domain except for the highest security domain. The limits may specify the
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maximum bandwidth usage over a certain period for corresponding security

domains or the aggregate maximum usage for each security domain and below.

2.3.4 Evaluation

Experimental Setup

We evaluate the proposed protection scheme, named RPSL, compared to the

baseline without protection and TNP. The simulations are performed by mod-

ifying Darsim [LSC+10]. The network is configured with four virtual channels

per port, and uses iSLIP [DT04] as the baseline allocator. We assume a low secu-

rity domain and a high security domain. For TNP, we allocate half of the virtual

channels and switch time slots to each security domain. For RPSL, we allocate

half of the virtual channels to each domain while prioritizing the low security

flows in arbitration. The static limit in RPSL is set to be 80 flits per 100 cycles.

Each packet consists of eight data flits and one head flit. All the experiments are

done with a warm-up period of 20,000 cycles, followed by simulation of 100,000

cycles.

Security Evaluation

We study the security of each protection scheme using the simple example

shown in Figure 2.1. In the experiments, we assign Flow A to be the low secu-

rity flow and Flow B to be the high security one. In practice, an attack program

will measure its throughput over time while keeping its injection rate high. The

variations in the observed throughput is used to obtain information about the
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Figure 2.3: Flow A’s throughput over time with varying demands from
Flow B. Flow A: low security, Flow B: high security.

victim. To mimic such an attack process, we keep Flow A’s injection rate at 1

flit/cycle while varying the injection rate of Flow B over time. More specifi-

cally, we randomly change the injection rate of Flow B among 1/3, 1/2, and 1

flit/cycle every 1000 cycles.

Figure 2.3 shows the dynamic throughput of Flow A. In the baseline scheme,

the throughput of Flow A varies significantly over time, which reflects the dy-

namic demands of Flow B. This shows the baseline scheme is vulnerable to

timing channel attacks. On the other hand, the throughput of Flow A stays con-

stant under TNP and RPSL, regardless of the changing injection rate of Flow B,

which shows the information leakage from the high security domain to the low

security domain is prevented.

Performance Evaluation

We evaluate the performance of the protection schemes on a 6-by-6 mesh net-

work with two security domains. As shown in Figure 2.4, domain A, which is

32



A

B

Figure 2.4: Experimental setup in a 6-by-6 mesh network.

the low security domain, was given one-fourth of the cores. We place the cores

in contiguous locations because this minimizes the communication cost within

a security domain. We simulated a transpose traffic pattern in which a node

communicates with the node that is symmetric with respect to the diagonal. We

use Y-X routing in this experiment. As a result, flows from different domains

share some links in the network, potentially causing interference. We tested

three injection rates (0.2, 0.5, 1.0 flit/cycle) for the low security domain. We plot

the average throughput of the low security domain while varying the average

injection rate of the high security domain, which shows if there exists a timing

channel from the high security domain to the low security domain.

Figure 2.5 shows the performance results. As expected, in the baseline

scheme, the throughput of domain A (low security) changes with the injection

rate of domain B (high security). In contrast, domain A’s throughput stays con-

stant under both TNP and RPSL. Again, this shows both schemes provides an

effective protection against timing channels. On the performance side, a dis-

tinct difference between the results of TNP and RPSL is that domain A achieves

higher average throughput in RPSL than in TNP when domain A’s injection rate
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(a) Baseline (b) TNP

(c) RPSL (limit = 0.8 flit/cycle)

Figure 2.5: Low security (domain A) throughput as a function of the high
security (domain B) demand for transpose traffic pattern.

is high (0.5 or 1 flit/cycle), which shows the performance advantage of RPSL

over TNP scheme by allowing more efficient sharing of network resources. We

also tested hotspot traffic pattern and the results show similar trends.

The experiments above keep the injection rate constant in each simulation

run. To mimic the real application behavior, we simulated the transpose traffic

pattern again but randomly vary the injection rate of each flow at run time. We

measure the throughput of each domain as well as the aggregate throughput of

the system, as shown in Figure 2.6. We normalize the actual throughput over

throughput demand, which equals to the number of flits received divided by
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Figure 2.6: Impacts of timing channel protection on the network through-
put.

the number of flits injected. For domain A, RPSL scheme achieves higher per-

formance than that of the baseline scheme. This is because RPSL gives domain

A a higher priority to use the router crossbar. For domain B, the performance

of RPSL is slightly lower than that of the baseline. However, the aggregated

performance of RPSL is comparable to the baseline. By contrast, TNP incurs a

significant performance overhead due to the static allocation of network band-

width. RPSL adapts to the dynamic network demands much better than TNP,

hence achieving much higher performance.
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CHAPTER 3

CACHES

Cache timing channels have been studied extensively in previous work. In this

chapter, we will discuss cache timing channel attacks and their countermea-

sures in detail. Section 3.1 summaries previous cache timing channel attacks.

Section 3.2 describes existing work on cache timing channel protections. In

Section 3.3, we propose a new cache timing channel attack based on cache co-

herence protocol and a protection scheme against it. Section 3.4 discusses our

uni-directional protection scheme called SecDCP (Secure Dynamic Cache Par-

titioning). Section 3.5 explores possible timing channel attacks and protections

in a high-associativity cache (ZCache) to support more security domains. Sec-

tion 3.6 describes a couple of cache designs that support software security labels

to protect against timing channels within a program.

3.1 Attacks

3.1.1 Cache Interference

Caches are vulnerable to timing channel attacks because cache misses take much

longer to finish than cache hits. When multiple programs are running concur-

rently and sharing the last-level cache, a program’s cache lines can be evicted

by other programs, causing this program to incur more cache misses and hence

experience longer execution time. This cache interference among different pro-

grams can be exploited to infer confidential information about a program. Even

if a program is running alone, it can still be prone to timing channel attacks
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Figure 3.1: Attack model for internal interference.

since its cache lines can evict each other. Given different input sets, the program

can show different execution times, which could be used to correlate with the

program’s secret.

The on-chip network interference is caused by contention in network re-

sources on a per-cycle basis. The scheduling decision in one cycle does not have

to affect the decision in the next cycle. This is quite different from the cache

interference, which is based on the cache state. After a cache line is fetched into

the cache, it will keep affecting the timing of following cache accesses until it

is evicted. As a result, the protection schemes for caches work quite differently

from the ones for on-chip networks. Before introducing the protection schemes,

we first describe existing cache timing channel attacks in more detail. Based on

the source of cache interference, we can generally categorize cache timing chan-

nel attacks into the ones based on internal interference and the ones based on

external interference.

3.1.2 Internal Interference

Attacks based on internal interference exploit the cache interference within a

victim program. Figure 3.1 illustrates the attack scenario. In this type of attacks,

the attacker sends requests to the victim and measures the timing of responses.
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The attacker then performs a timing analysis to recover a secret of the victim.

Previous work [Ber05] has successfully demonstrated such an attack on AES

encryption algorithm. The pseudocode for the victim program is shown below:

1 Victim :

2 ki = segment of the key ;

3 xi = segment of input message ;

4 . . .

5 ( Table [ j ] i s e v i c te d by the

6 vic t im code i t s e l f )

7 r = Table [ ki ⊕ xi ] ;

8 ( i f ki ⊕ xi = j , the encryption

9 takes longer than otherwise )

In this AES algorithm, AES tables are used to speed up computation. The

AES key is used to index into the AES table. However, due to internal interfer-

ence, some of the table entries are evicted by the victim code itself, hence cache

accesses to these table entries become cache misses, which delays the encryp-

tion responses to the attacker. Using a known encryption key ki
′, the attacker

tries different values of input messages and find the one (xi
′) that gives longest

encryption time. The attacker is able to derive j, which equals to ki
′
⊕ xi

′. The

same process is repeated for an unknown key ki, and the corresponding xi can be

found out. Using the following equation, the attacker can successfully recover

the unknown key ki.

ki
′
⊕ xi

′ = ki ⊕ xi (3.1)

In general, attacks based on internal interference rely on the fact that the

timing of the victim’s responses is dependent on the victim’s secret. The attacker
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Figure 3.2: Attack model for external interference.

does not have to be on the same physical machine as the victim. Example attacks

include Bernstein’s attack [Ber05] and cache collision attacks [BM06].

3.1.3 External Interference

Attacks based on external interference exploit the cache interference between

different programs. The interference can be caused either by a context switch

between two programs on the same core, or by resource contention between

programs that are running concurrently in a multi-core processor. We focus on

the latter case in this study. Figure 3.2 shows the attack scenario. The cache is

shared by the attacker and victim programs, hence one program’s cache lines

can be evicted by the other program. The attacker is able to detect which cache

lines have been evicted by the victim, given that cache misses take much longer

time to finish than cache hits. Hence, the attacker can derive the index of cache

lines that have been accessed by the victim. Previous work [Per05] has shown

that this information is sufficient to recover a part of the AES key of a victim

program.

In the attack described above, the information is leaked through the ad-

dresses of cache accesses. Other than addresses, we found that the number of
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cache accesses can also leak information, which often takes the form of a covert

channel attack. In this attack, two attackers collude to communicate a secret

through cache interference. Assume two attackers, A and B, share the cache.

Attacker B first primes the cache with its own cache lines. After that, attacker

A either issues many cache accesses to evict attacker B’s cache lines to indicate

a bit ‘1’, or issues no cache accesses to indicate a bit ‘0’. By probing the cache

again, attacker B can learn whether a bit ‘1’ or ‘0’ is sent by attacker A.

In general, attacks based on external interference rely on the fact that the

victim evicts the attacker’s cache lines or accesses shared cache lines based

on secret information. The attacker can detect the evictions of its own cache

lines or the accesses of shared cache lines through timing and then infer the

secret information. The attacker must reside on the same physical machine

as the victim to make this attack succeed. Example attacks include prime-

probe attacks [Per05, OST06], evict-time attacks [OST06] and flush-reload at-

tacks [GBK11].

3.2 Previous Protection Schemes

Previous work proposes many protection schemes to defend against cache tim-

ing channel attacks. Software solutions [OST06, BGNS06] rely on rewriting the

software to remove known timing channels. They are ad hoc and new attacks

may be possible after the software is rewritten. For instance, RSA implemen-

tation using Montgomery multiplication and Chinese Remainder Theorem was

believed to be secure against timing channel attacks, but was proven wrong by

later work [BB03]. Furthermore, software solutions usually incur large perfor-
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mance overhead (2x - 4x slowdown) [BGNS06]. Hardware solutions provide

more general and efficient protection by modifying the cache architecture.

Various secure cache designs [Pag05, WL07, WL08, LL14] haven been pro-

posed recently. The approaches taken by these designs fall into two categories:

randomization and partitioning. In the randomization approach [WL07, WL08,

LL14], the memory-to-cache mapping is randomized to obfuscate the attacker’s

measurement. Randomization approach essentially adds noise to an attackers

observation. A general problem with this approach is its vulnerability to covert

channel attacks, which can collect a large number of data samples to remove

the noise and recover confidential information. Moreover, randomization only

hides which cache line has been accessed by the victim, but does not hide the

number of cache accesses. In covert channel attacks, an attacker can intention-

ally manipulate the number of cache accesses to send confidential information.

In the partitioning approach [Pag05], the cache is statically divided into multi-

ple partitions. Each partition can only be used by one process, thereby elimi-

nating the cache interference between a victim and an attacker. However, static

cache partitioning incurs high performance overhead because the partition size

cannot adapt to the runtime cache demand of each process.

3.3 Cache Coherence

Multi-core processors use cache coherence protocols to allow data to reside in

multiple private caches. Unfortunately, we found that coherence operations can

lead to a new timing channel, which was not discussed previously. Coherence

operations can lead to timing interference through coherence bus contention or
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Figure 3.3: System architecture for a cache coherence attack.

contention for cache ports. Even when there is no shared data between security

domains, interference on the shared coherence networks can lead to a timing

channel.

3.3.1 Cache Coherence Attack

We demonstrate a timing covert channel attack through cache coherence using

a simulated 4-core system. The architecture of the system is shown in Figure 3.3.

Each core has private L1 and L2 caches, and the four cores share an L3 cache.

The four L2 caches are connected with a snooping coherence bus, which uses

a MOESI protocol. Note that a similar attack is viable for directory coherence

protocol.

We assume two mutually distrusting security domains. Security domain 0

(SD0) runs on core 0 and core 1 while security domain 1 (SD1) runs on core

2 and core 3. We assume different security domains can share read-only data

(e.g., program code). SD0 has two threads, each running on a different core.
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Figure 3.4: SD0’s timing observation.

Both threads run a f or loop, and write to shared data during each iteration.

Before each write is performed, one of the L2 caches has to forward the data to

the other through the snooping bus and invalidate its own copy. SD0 repeats

this process and records the time for each f or loop execution.

To communicate a secret, SD1 sends a ‘0’ bit by doing nothing and sends a

‘1’ bit by spawning multiple threads that write to shared data. When SD1 does

nothing, SD0’s cache coherence traffic is not interfered by SD1. When SD1 writes

to shared data using multiple threads, SD1 also generates coherence traffic on

the bus, which delays the coherence traffic from SD0. As a result, SD0 observes

a longer execution time of the f or loop. Figure 3.4 shows the execution time of

the f or loop that SD0 observes. The execution time has a clear correlation with

the secret ‘01101100’ sent by SD1.
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3.3.2 Cache Coherence Protection

Cache coherence protocols have two sources of timing interference, namely bus

contention and port contention. Similar to on-chip networks, we can use tem-

poral network partitioning to remove interference between security domains.

However, protection for cache coherence is more complicated in two aspects.

First, a coherence request from security domain A can be sent to a cache that

belongs to another security domain B. When the receiving cache sends a re-

sponse (e.g., ack), the response must use A’s time slots in the on-chip network.

Otherwise, the response can interfere with B’s own network traffic, creating

an interference from security domain A to security domain B. Second, in the

MOESI protocol, a private cache that has a “Owned” state of a data must for-

ward the data to another cache that requests the data, even if the other cache

belongs to a different security domain. This operation requires using the cache

pipeline and can delay the requests from the core, which may result in timing

interference between security domains. To remove this contention, we modify

the coherence protocol so that the data is served from the shared cache instead

of the private cache whenever the data is owned by a different security domain.

Because different security domains only share read-only data, the shared cache

should always has an up-to-date copy.
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3.4 Secure Dynamic Cache Partitioning (SecDCP)

3.4.1 Background

Previous work [SDR02, QP06, XL09, SK11a] has studied dynamic cache parti-

tioning techniques to improve cache performance by utilizing the runtime cache

demand information of each application to adjust the partition sizes. However,

previous dynamic partitioning schemes are prone to timing channel attacks due

to the following reasons.

First, the partition size depends on the cache demand of confidential ap-

plications. Previous dynamic cache partitioning schemes consider the cache de-

mands of all processes to decide the partition size. This means the partition sizes

can reveal the cache demand of each process. By observing the change in its own

partition size, an attacker application is able to infer the runtime demand of a

confidential application, and further correlate this demand information with a

secret.

Second, the change in runtime partition sizes is not strictly enforced. When

changing the cache partition size, previous dynamic cache partitioning meth-

ods [QP06, XL09, SK11a] enforce the new partition size at replacement time.

If the size of a cache partition decreases, its cache lines are not immediately

evicted. Instead, they remain in the cache until some cache lines from another

process replace them. This means the eviction of one process’s cache lines de-

pends on other processes’ cache accesses—a vulnerability for timing channel

attacks.
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Since dynamic cache partitioning is vulnerable to timing channel attacks,

prior secure partitioned cache designs have used static cache partitioning, in-

curring significant performance overhead. In this section, we show that secure

dynamic cache partitioning is feasible under hierarchical security policy (see

Figure 1.5). We observe that the hierarchical security policy is inherently asym-

metric. We only need to prevent information flow from confidential applica-

tions to public applications. Taking advantage of this asymmetry, we propose

Secure Dynamic Cache Partitioning (SecDCP), which significantly improves the

performance of static cache partitioning while meeting security requirements.

To illustrate the ideas of SecDCP, we first describe SecDCP design for a sim-

ple hierarchy with two security domains and then extend it to the general hier-

archical security policy.

3.4.2 SecDCP for Two Security Domains

Consider the security policy in Figure 3.5. We assign security domain H to the

confidential application and security domain L to the public application. The

goal is to prevent information flow from H to L through cache timing channels.
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Figure 3.6: Generated miss curve by UMON.

To achieve this goal, SecDCP follows a couple of design rules; 1) partition size

is independent of confidential applications, and 2) operations for changing par-

tition size leak no information about confidential applications.

We divide SecDCP into two parts: Partition Allocation Algorithm (PAA) and

Partition Enforcement Mechanism (PEM). PAA is responsible for allocating the size

of each partition at run time. PEM is responsible for enforcing the new partition

size after PAA picks a new cache allocation.

Partition Allocation Algorithm (PAA)

Unlike previous dynamic cache partitioning techniques in which the cache al-

location is dependent on the demands of both L and H, PAA only uses the de-

mand from L to allocate the partition size. We divide the time into epochs of

length T . At the end of each epoch, PAA allocates a new partition size based on

the demand of L in current epoch. Inside each epoch, we use utility monitors

(UMON) [QP06] to collect the utility information of L. UMON generates miss

curves shown in Figure 3.6. The miss curve is a function that maps the number

47



gain > thinc ?

Increase partition
by 1 way

loss < thdec ?

Decrease partition
by 1 way

End

Y Y

N N

Figure 3.7: Partition Allocation Algorithm.

of cache ways to the number of cache misses. Using the miss curve, we can cal-

culate the gain for increasing the cache size as well as the loss for decreasing the

cache size. Assume the current partition size for L is X ways, we define the gain

and loss as follows:

gain = [MIS S (X) − MIS S (X + 1)]/MIS S (X) (3.2)

loss = [MIS S (X − 1) − MIS S (X)]/MIS S (X) (3.3)

MISS(X) means the number of cache misses with X cache ways. Gain indi-

cates the percentage of cache misses for L that can be reduced when we increase

L’s partition size by one cache way. Loss indicates the percentage of additional

cache misses for L that will be introduced when we decrease L’s partition size

by one cache way.

The gain and loss parameters are fed into PAA, as shown in Figure 3.7. PAA

defines two threshold values, thinc and thdec, to determine the new partition size.

If the gain is larger than thinc, L’s partition size increases by one way. Otherwise,

if the loss is smaller than thdec, L’s partition size decreases by one way.

48



Note that PAA only considers the demand of L when allocating the parti-

tion size. This design choice is made to prevent information leakage from H to

L. When L increases its partition size, H’s partition size decreases accordingly.

Although H may suffer from the reduced partition size, overall system perfor-

mance can still improve since L will get significant improvement (higher than

thinc). To prevent unfairness and starvation, our default design always reserves

one cache way for H. On the other hand, when L decreases its partition size,

H’s partition size increases accordingly. This creates an opportunity for H to

improve its performance with more cache ways, while the performance drop of

the L partition is bounded (less than thdec).

Partition Enforcement Mechanism (PEM)

After PAA allocates a new partition size, PEM enforces the new allocation in

a way that leaks no information from H to L. A naive approach is to flush the

entire cache way whenever a way is reallocated to another security domain. But

flushing can introduce significant performance overhead. PEM improves the

performance by treating increases and decreases of partition sizes differently.

We associate each cache line with a 1-bit identifier (ID) to indicate which

security domain fetched the cache line. When L’s partition size decreases, PEM

checks the IDs and flushes all the cache lines that belong to L in the adjusted

cache way before reallocating it to H. This flush is independent of accesses

from H, so no information is leaked from H to L. On the other hand, when L’s

partition size increases, PEM does not flush the cache way that gets reallocated

from H to L. As a result, H’s cache lines in this cache way can be evicted by

L’s cache lines, and H can learn about the cache accesses of L. However, this
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ConfidentialApp

PublicApp

Time

Cache-Sensitive Cache-Insensitive

Figure 3.8: Application Phases.

information flow is benign according to our security policy. The optimization

improves the performance of H by allowing H to get cache hits in its cache lines

in L’s partition until L evicts them.

Efficiency Discussion

SecDCP dynamically partitions the cache at run time by utilizing cache demand

information from public applications, while previous dynamic cache partition-

ing schemes such as utility-based partitioning [QP06] use information from all

applications to decide partition sizes. How does SecDCP make good partition-

ing decisions when it only sees information from one side?

It is known that applications often show phase behavior. To simplify analy-

sis, we categorize application phases into cache-sensitive and cache-insensitive

phases. Assume a confidential application is running concurrently with a public

application, as shown in Figure 3.8. The state of concurrent application phases,

(PublicApp, ConfidentialApp), can be divided into four cases: (I, I), (I, S ), (S ,

I), (S , S ). Here, I represents a cache-insensitive phase and S a cache-sensitive

phase. We analyze performance case-by-case:

• (I, I): The cache partition size does not affect performance much, so

SecDCP and utility-based partitioning achieve similar performance.
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• (I, S ): Both schemes allocate most of the cache to the confidential applica-

tion because the public application does not need much cache.

• (S , I): Utility-based partitioning will allocate most of the cache to the pub-

lic application. SecDCP’s allocation will achieve the same outcome if the

threshold is properly chosen.

• (S , S ): Utility-based partitioning will find an allocation that benefits both

applications the most, whereas SecDCP’s allocation is dependent on the

threshold value.

In a summary, SecDCP achieves almost the same performance as utility-

based partitioning when the public application is cache-insensitive. For the

other two cases, the performance of SecDCP relies on the accuracy of a threshold

value. In our experiments, SecDCP uses the same threshold value (20%) across

different benchmarks and achieves similar performance as utility-based parti-

tioning. Our analysis and experimental results indicate that using information

from one side is enough for dynamic partitioning in many cases.

3.4.3 SecDCP for General Case

We now describe SecDCP for a more general security policy as shown in Fig-

ure 1.5, where there are multiple security tiers. It may seem straightforward to

extend SecDCP for a general security policy, but this extension turns out to be

non-trivial.
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Figure 3.9: Security policy example.

Partition Allocation Algorithm (PAA)

For a general security policy, PAA uses UMON to track the cache demand of

each security domain separately. Using the allocation algorithm, PAA is able to

figure out the change in partition size for each security domain. However, a

new problem arises when PAA tries to reallocate the partition size. In a general

security policy, if one security domain needs to increase its partition size, it can

take a cache way from any security domain that is in a higher tier. We found

that security vulnerabilities exist if PAA is not designed carefully. Without loss

of generality, we discuss the insecure designs in the case of 3 security tiers, as

shown in Figure 3.9. There are Ki security domains in tier i (1 ≤ i ≤ 3).

Case 1: Suppose L1 wants to increase its partition size. Meanwhile, M1 wants

to decrease its partition size and M2 wants to keep its partition size the same. A

performance oriented algorithm tends to pick a cache way from M1 to reallocate

to L1. If M2 knows L1 is cache-sensitive, but observes that it does not lose any

cache way, it can infer M1 may be decreasing its partition size. Hence, M2 can

learn the runtime cache demand of M1.

Case 2: Assume M1 wants to increase its partition size. M1 gradually takes

cache ways from H j where (1 ≤ j ≤ K3) until there is no any available cache way
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in security tier 3. Now security domain M2 starts to request for larger partition

size. However, M2 cannot get more cache ways because tier 3 has no extra cache

ways. If M2 knows that applications in tier 1 are cache-insensitive, then M2 can

infer that a security domain in tier 2 has high cache demand.

The pitfalls can be summarized as follows: 1) Dynamic arbitration between

incomparable security domains based on cache demand. 2) First-Come, First-

Serve (FCFS) allocation.

Our secure allocation design avoids the aforementioned pitfalls. We assume

a general security policy that consists of N security tiers with each tier contain-

ing Ki incomparable security domains where 1 ≤ i ≤ N. For the convenience of

description, we use the notation Ci, j to denote the jth security domain in secu-

rity tier i.

If a security domain Ci, j wants to increase its partition size, PAA will first

check security tier (i + 1). There are Ki+1 security domaines in tier (i + 1). We

assume each security domain has P cache ways that can be reallocated to other

security domaines initially. There are Ki+1 ∗P available cache ways for allocation

in tier (i + 1). To avoid the FCFS allocation pitfall, PAA reserves certain num-

ber of cache ways for each incomparable security domain. Since there are Ki

incomparable security domaines in tier i, each security domain in tier i can get

at most bKi+1 ∗P/Kic cache ways from tier (i+1). Hence, PAA checks the reserved

cache ways for security domain Ci, j in tier (i + 1). If there exists one cache way

that is currently occupied by a security domain Ci′, j′ and i′ > i, then this cache

way can be reallocated to Ci, j. If multiple cache ways satisfy the condition, PAA

picks one cache way using a strict round-robin policy, thereby avoiding the pit-

fall of dynamic arbitration based on cache demand. If no cache way satisfies the
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condition, PAA will then move to tier (i + 2) and repeats the same procedure.

The algorithm traverses through the security tiers from tier (i + 1) to tier N, and

terminates when a target cache way is found or the search reaches tier N.

If security domain Ci, j wants to decrease its partition size, PAA will simply

reallocates the extra cache way to one security domain in tier (i + 1). If there are

multiple security domaines in tier (i + 1), PAA picks one security domain using

strict round-robin policy.

Partition Enforcement Mechanism (PEM)

PEM does not flush the cache way when the partition size increases, since we

allow cache lines belonging to a lower security domain to evict cache lines be-

longing to a higher security domain. However, when a partition size decreases,

PEM needs to carefully flush specific cache lines to avoid timing channel at-

tacks. Assuming a security domain Ci, j gives up one cache way to be reallocated

to another security domain Ci+1, j′ , PEM will check each cache line in the reallo-

cated cache way. If the security domain of a cache line is incomparable with or

lower than Ci+1, j′ , this cache line needs to be flushed.

3.4.4 Evaluation

Experimental Setup

We use an architecture simulator, gem5 [BBB+11], to evaluate the performance

of SecDCP. We model a multi-core system that is configured with private L1

caches and a unified shared L2 cache, as shown in Table 3.1. We ran multipro-
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Core count 2 / 4
Core model 2GHz Out-of-Order, ARM ISA

L1 caches Private, 32kB, 2-way set associative, split D/I
L2 caches Shared, 1MB, 8-way set associative / Shared,

2MB, 16-way set associative
Memory 200-cycle latency, 8GB/s peak memory BW

Table 3.1: System configuration.

cache-insensitive astar, libquantum, gobmk, h264ref, hmmer, sjeng
cache-sensitive bzip2, mcf, soplex, xalan

Table 3.2: Program categorization.

gram workloads that consist of SPEC CPU2006 programs. We fast-forward the

simulation until every program in the workload has reached 1 billion instruc-

tions, after which the simulator starts detailed timing simulation. The simula-

tion terminates when every program has run at least 250 million instructions.

We calculate the IPC (Instruction Per Cycle) for each program using only the

first 250 million instructions simulated.

We use 10 SPEC CPU2006 programs to form our multiprogram workloads.

We use profiling to categorize these programs [QP06], as shown in Table 3.2.

Cache-insensitive programs do not benefit significantly from cache size increase

because they have few cache accesses or because their working set fits in a small

cache size. In contrast, cache-sensitive programs can continuously benefit from

increasing cache size up to the entire cache. For convenience, we mark cache-

sensitive programs with the letter S and mark cache-insensitive programs with

the letter I. We use weighted speedup as the metric to evaluate the performance.

For a system with programs running concurrently, weighted speedup is defined

as the sum of each program’s IPC normalized to the IPC when the program is
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Figure 3.10: Performance for S S workloads.

running by itself:

Weighted S peedup = Σ(IPCi/S ingleIPCi) (3.4)

Performance for Two Security Domains

We first study the performance of SecDCP when there are two security domains,

as shown in Figure 3.5. We use the naming convention program1 program2 for

a workload, meaning that program1 belongs to L and program2 belongs to H.

We compare SecDCP with three other schemes. The first scheme is static parti-

tioning, which statically divides the cache into two equally-sized partitions. The

second scheme has no partitioning and the entire cache is managed using LRU

replacement policy. The last scheme is utility-based partitioning [QP06] that dy-

namically partitions the cache using runtime cache demands of both programs.

For SecDCP scheme, we set the threshold value, thinc and thdec, to be both 20%

in these experiments. Out of the four schemes, static partitioning and SecDCP

are secure while LRU and utility-based partitioning are insecure against cache

timing channel attacks.
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Figure 3.11: Performance for S I workloads.

Figure 3.10 shows the results for S S workloads, which are mixes of two

cache-sensitive programs. We normalize the weighted speedup of each scheme

to that of static partitioning. For these workloads, SecDCP achieves 12.5% im-

provement over static partitioning on average. In some cases, the improvement

can reach as much as 40%. This is because S S workloads are cache-sensitive, re-

quiring efficient utilization of the limited cache space. Static partitioning incurs

high performance overhead since it cannot adapt the partition sizes to meet the

runtime cache demand of each program. SecDCP increases the partition size

of L when the L program is able to improve its performance with larger par-

tition size. On the other hand, SecDCP decreases the partition size of L when

it will not hurt the performance of the L program by much, thus giving more

cache space to the H program, which can opportunistically improve its perfor-

mance. On average, SecDCP achieves similar performance to no partitioning

and utility-based partitioning.

Figure 3.11 shows the performance for S I workloads, which are randomly

selected mixes of a cache-sensitive program and a cache-insensitive program.

On average, SecDCP achieves an 11.4% improvement over static partitioning.

For S I workloads, SecDCP will gradually reduce the partition size of the cache-
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Figure 3.12: Performance for II workloads.

insensitive program, greatly improving the performance of the cache-sensitive

program. Utility-based partitioning can also achieve the same goal, which is

why we see similar speedups between SecDCP and utility-based partitioning

for each workload. We also see in some cases (e.g., bzi lib) that SecDCP per-

forms worse than static partitioning. This is because the threshold value we

choose (i.e., 20%) does not match the cache demand of bzip2. In this work-

load, bzip2 keeps decreasing its partition size because the loss (defined in equa-

tion 3.3) is less than 20%. However, libquantum is a streaming program that

cannot utilize the increasing cache size. System performance decreases as a re-

sult. If we swap the programs (i.e., lib bzi), bzip2 gets most of the cache because

libquantum gives up most of its cache ways. As the figure shows, SecDCP out-

performs static partitioning by 5% for lib bzi.

Figure 3.12 shows the performance for II workloads, in which both pro-

grams are cache-insensitive. Since the performance of the program does not

depend much on cache size, all schemes perform similarly.
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Figure 3.13: Performance for a linear security policy.

Scalability

We then study the performance of SecDCP when the system scales to four cores.

We use a 2MB, 16-way set-associative L2 cache, which is shared by four pro-

grams. We consider two different security policies. The first policy is a linear

security policy, as shown in Figure 1.6(a). Since we did not observe a big dif-

ference between no partitioning and utility-based partitioning in 2 core exper-

iments, we do not include utility-based partitioning in 4 core experiments for

simplicity. The static partitioning scheme divides the cache into four partitions,

each being a four-way cache. We picked 32 four-program workloads, which

consists of S S , S I and II types (two programs from each category). The results

are shown in Figure 3.13. SecDCP achieves 6.4% improvement over static par-

titioning on average. For quite a few benchmarks, the improvement can reach

20%. However, we do see some workloads for which SecDCP performs worse

than static partitioning. This is due to the imprecision of the threshold value we

choose (20%).

59



m
cf_

bz
i_x

al_
so

p

bz
i_x

al_
so

p_
m

cf

xa
l_s

op
_m

cf_
bz

i

so
p_

m
cf_

bz
i_x

al

m
cf_

xa
l_b

zi_
so

p

xa
l_b

zi_
so

p_
m

cf

bz
i_s

op
_m

cf_
xa

l

so
p_

m
cf_

xa
l_b

zi

m
cf_

xa
l_a

st_
as

t

as
t_

as
t_

m
cf_

xa
l

lib
_li

b_
so

p_
bz

i

so
p_

bz
i_l

ib_
lib

m
cf_

as
t_

so
p_

lib

as
t_

m
cf_

lib
_s

op

as
t_

xa
l_b

zi_
lib

xa
l_l

ib_
as

t_
bz

i

m
cf_

xa
l_h

26
4_

go
b

h2
64

_g
ob

_m
cf_

xa
l

hm
m

_s
je_

so
p_

bz
i

so
p_

bz
i_h

m
m

_s
je

m
cf_

h2
64

_s
op

_h
m

m

h2
64

_m
cf_

hm
m

_s
op

sje
_x

al_
bz

i_g
ob

xa
l_g

ob
_s

je_
bz

i

as
t_

as
t_

h2
64

_g
ob

h2
64

_g
ob

_a
st_

as
t

hm
m

_s
je_

lib
_li

b

lib
_li

b_
hm

m
_s

je

as
t_

h2
64

_li
b_

hm
m

h2
64

_li
b_

hm
m

_a
st

sje
_a

st_
lib

_g
ob

lib
_g

ob
_s

je_
as

t

GEOM
EAN

Workload

80

90

100

110

120

130

N
or

m
al

iz
ed

 W
ei

gh
te

d 
S

pe
ed

up
 (

%
) 10% 20% 25% best

SS SI II

Figure 3.14: Performance with different thresholds.

To validate our judgement, we tried different threshold values from the set

{2%, 5%, 10%, 15%, 20%, 25%}. We show the results for three threshold val-

ues in Figure 3.14. We also plot a bar (labeled as “best”) that represents the

best performing threshold for each workload. As can be seen, the threshold

value can affect the performance significantly for most workloads, hence pick-

ing a good threshold is important. By comparing against the profiling results

for individual program, we found that the optimal threshold value depends on

the steepness of a program’s miss curve. A steeper miss curve usually indi-

cates a larger threshold value. For most workloads, using 20% as the threshold

value performs reasonably well, only within 2.5% worse than the best perform-

ing threshold on average.

The second policy is shown in Figure 1.6(b). In this security policy, the two

public applications belong to the same security domain. The static cache parti-

tioning scheme divides the cache into 3 static partitions. The partition size for

L is 8 cache ways because two programs share the partition, while the partition

sizes for H1 and H2 are both 4 cache ways. In the previous threshold study, we

found 20% is a good threshold value for SecDCP. However, this is not the case
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Figure 3.15: Performance for mobile security policy.

when a security domain contains two programs. Consider the case that two

programs have the same amount of cache misses, but one program can achieve

20% less cache misses with one extra cache way while the other program does

not benefit from more cache ways. In this case, we still want to give one extra

cache way to these two programs although the overall reduced cache misses is

only 10%. Hence, we need to set the threshold value lower, roughly equals to

20%/(# of programs in a security domain). We performed the same threshold

study for this security policy, which shows that SecDCP with a 10% threshold

performs much better than a 20% threshold. Figure 3.15 shows the performance

of SecDCP with a 10% threshold. SecDCP achieves up to 21% and on average

3.3% improvement over static partitioning. The speedup is lower than that of

the linear security policy, because the performance of the baseline static cache

partitioning improves compared to the linear security policy by allowing the

two public applications to share a cache partition.
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Figure 3.16: ZCache architecture.

3.5 Protection Based on a High-Associativity Cache (ZCache)

Static partitioning and SecDCP both partition the shared cache at the granu-

larity of cache ways. Although they are secure against timing channel attacks,

the number of security domains that can be supported simultaneously is con-

strained by the cache associativity. To overcome this limitation, we explore tim-

ing channel protection schemes based on ZCache [SK10], a high-associativity

cache that can potentially support large number of security domains.

3.5.1 Background

ZCache is a novel high-associativity cache design. In a normal set-associative

cache, the number of replacement candidates equals to the associativity. In

ZCache, the number of replacement candidates can be much larger than the

physical associativity. As a result, a better replacement candidate can be cho-

sen for eviction to improve cache performance. Essentially, ZCache increases
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Addr Y B O U ...
H0 1 1 7 5 ...
H1 6 3 6 0 ...
H2 4 5 2 4 ...

Table 3.3: Hash values for each address.

Y

B O U

L V H S F I

Figure 3.17: Tree of replacement candidates.

the effective associativity of a cache. This is achieved by using different hash

functions to decide the cache set number for each cache way.

To illustrate how ZCache works, let us consider a 3-way cache shown in Fig-

ure 3.16. A new cache block Y is fetched into the cache. Each cache way has

a different hash function (H0, H1, H2) to decide the set number. As a result,

Y is mapped to set 1 in way 0, set 6 in way 1 and set 4 in way 2. Now Y has

3 replacement candidates, {B, O, U}, to choose from. However, since a cache

block can reside in different sets in different cache ways, ZCache can generate

more replacement candidates by considering the possible locations of {B, O, U}

in other cache ways. Given the hash values in Table 3.3, we can derive more

replacement candidates in a tree structure, as shown in Figure 3.17. In this ex-

ample, we only expand the tree to two levels, but more levels can be generated

if needed. Suppose the replacement policy choose cache block V for eviction. A

series of relocation operations are required to maintain the cache organization.

The relocation process is shown in Figure 3.18(a). Y replaces B, B replaces V ,

and V is evicted. Figure 3.18(b) shows the final cache state.

63



Way 0 Way 1 Way 2

Set

0

1

2

3

4

5

6

7

A I Q

B J R

C K S

D L T

E M U

F N V

G O W

H P X

Y

(a)

Way 0 Way 1 Way 2

Set

0

1

2

3

4

5

6

7

A I Q

Y J R

C K S

D L T

E M U

F N B

G O W

H P X

(b)

Figure 3.18: Relocation to accommodate incoming cache block.

The advantage of ZCache is the large amount of replacement candidates

during an eviction, even with limited physical cache associativity. With more

replacement candidates, the replacement policy can pick a better cache line for

eviction to improve the performance. As the ZCache paper points out, the ef-

fective cache associativity depends on how good the replacement decision can

be compared to a fully-associative cache, not the physical cache associativity.

However, ZCache does not defend against cache timing channel attacks, be-

cause it still allows a victim’s cache lines to evict an attacker’s cache lines, and

the eviction is not randomized. In the following discussion, we explore how we

may extend ZCache to support timing channel protection.

3.5.2 Same-Domain Replacement

To avoid interference between different security domains, we first explore a

scheme that enforces same-domain replacement. In this scheme, a new cache

block can only evict a cache block that belongs to the same security domain.

This is illustrated in Figure 3.19. We use uppercase letters to denote the cache

lines from one security domain, and lowercase letters to denote the cache lines
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Figure 3.19: Same-domain replacement.

from another security domain. All eligible replacement candidates are marked

white. If the tree does not contain any cache lines from the same security do-

main as the new cache line, the new cache line is directly sent to the CPU and

not cached. Under this replacement policy, a victim program can never evict an

attacker’s cache lines. However, a victim program can change the locations of

an attacker’s cache lines through relocation process. For example, if the cache

line being evicted is O, both cache lins b and f will be relocated to another cache

way.

At first glance, allowing relocations between different security domains may

seem benign. However, we discover a practical covert channel attack by exploit-

ing this relocation process. We assume two attackers share a ZCache while one

attacker (sender) is trying to send confidential information to the other attacker

(receiver). Each attacker belongs to a different security domain. The cache has 4

physical cache ways and 128 cache sets. Each attacker occupies 256 cache lines—

half of the cache capacity. The receiver randomly generates 512 addresses. In

each round, the receiver accesses these 512 addresses one by one, and records

the hit or miss information for each address through timing. After that, the re-

ceiver waits for a time interval and starts the next round, repeating the same

operations. The receiver performs 128 rounds, so it can gather 512*128 data
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(a) Sender does nothing.
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(b) Sender issues random accesses.

Figure 3.20: A relocation-based attack.

points. On the other hand, the sender performs different operations to encode

one bit. To send a bit ‘0’, the sender does not issue any cache access. To send

a bit ‘1’, the sender randomly issues 2,560 cache accesses in each round, which

can relocate the receiver’s cache lines. If the receiver is able to distinguish these

two cases, then one bit is communicated successfully.

Figure 3.20(a) and Figure 3.20(b) shows the hits and misses that the receiver

observes in each case. The X axis is the data point in one round (512 data points)

and the Y axis denotes different rounds. A red data point indicates a cache hit

while a blue data point indicates a cache miss. Although both graphs appear

to be rather random, there is a subtle difference between the two graphs. In

the graph that assumes no accesses from the sender (Figure 3.20(a)), there exist

some red lines that cross all the way from top to bottom. These red lines are

addresses that always get cache hits, which means they never get evicted from

the cache. In contrast, in the graph that assumes random accesses from the

sender (Figure 3.20(b)), no such red lines exist. This observable difference easily

distinguishes the two cases and can be exploited for timing channel attacks.
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Figure 3.21: Strict same-domain replacement.

In the first case, some addresses are never evicted from the cache because

they do not conflict with any other addresses in the 512 addresses in their cur-

rent cache way. As a result, they stay in a fixed cache location and keep pro-

viding cache hits. However, in the second case, these addresses are very likely

to get relocated by the cache accesses from the sender under the same-domain

replacement policy. After these addresses are relocated to another cache way,

they may conflict with the other addresses given that a different hash function

is used. As a result, they may get evicted because of cache conflicts. This at-

tack shows that even allowing relocation between different security domains

can introduce timing channels if the attacker is able to collect a large number

of data points. Same-domain replacement may be sufficient to defend against

side channel attacks, but is still prone to covert channel attacks, which can send

many data points using this relocation process.

3.5.3 Strict Same-Domain Replacement

To eliminate the timing channel caused by relocation between different security

domains, we can add further restrictions on the eligible replacement candidates.

Specifically, we restrict the replacement candidates to be only the cache lines
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whose path to the root node all consists of cache lines from the same security

domain. This replacement policy is illustrated in Figure 3.21. The eligible can-

didates are marked white. If no eligible replacement candidates exist in the tree,

the data is supplied to the CPU directly without caching.

In this strict same-domain replacement scheme, a security domain can nei-

ther evict nor relocate cache lines that belong to another security domains. This

design provides complete non-interference, hence is secure against timing chan-

nel attacks. However, the number of eligible replacement candidates can drop

significantly compared to the “relaxed” same-domain replacement scheme, es-

pecially if we scale up the number of security domains. To alleviate this scaling

issue, we propose to apply set partitioning on top of strict same-domain replace-

ment. Since hash functions are already part of the ZCache implementation, set

partitioning can be implemented efficiently by slightly modifying the hash func-

tion, hence introducing negligible hardware overhead. For example, if a cache

that has 4 cache ways and 2048 cache sets needs to support 4 security domains,

we can map the first two security domains to the first 1024 sets and the last

two security domains to the last 1024 sets by modifying the hash functions as

follows:

Hash(address)%1024 + (security domain ID/2) ∗ 1024 (3.5)
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3.6 Defending Against Timing Channels within a Program

3.6.1 Reuse-Based Attacks

So far, we’ve only discussed cache timing channel protection schemes to defend

against attacks based on external interference, in which different programs that

share a cache belong to different security domains. However, these protection

schemes are ineffective against attacks based on internal interference. In this

type of attacks, the attacker can reside on a remote machine and communicates

with the victim. The execution time of the victim code (e.g., performing an

encryption) may correlate with the victim’s secret, hence the attacker is able to

infer the secret through timing channels. As an example, consider the following

victim code:

1 i f ( s e c r e t )

2 h = l 1

3 e l s e

4 h = l 2

5 l 1 = 0

If the secret bit is ‘1’, line 2 is executed and l1 is fetched into the cache.

When line 5 gets executed, the memory access results in a cache hit. How-

ever, if the secret bit is ‘0’, line 4 is executed instead. When line 5 gets executed,

the memory access leads to a cache miss. The attacker is able to tell the value

of the secret simply by observing the victim’s execution time. This attack is a

type of reuse-based attacks [BM06], which exploits the fundamental feature of a

cache—demand fetch. Essentially, when a memory block is accessed, it will be
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fetched into the cache, so the following accesses to this same memory block will

become cache hits and take less time.

Random fill cache [LL14] defends against reuse-based attacks by fetching a

random memory block within some range of the target block into the cache in-

stead of the target block itself. In the attack example above, random fill cache

does not fetch l1 when line 2 gets executed. It will randomly fetch some mem-

ory block that is near l1 into the cache, thus line 5 may or may not be a cache

hit. However, random fill cache requires the security-critical data to be in con-

tinuous memory regions to guarantee security, which is restrictive and some-

times can be impractical. Besides, random fill cache may incur significant per-

formance overhead because many unuseful cache lines may be fetched into the

cache.

3.6.2 Language-Based Protection

Instead of completely abandoning demand fetch, which is the workhorse of a

cache, we propose to disable demand fetch only when demand fetch will leak

secret information. This can be accomplished with the help of a language-based

protection framework proposed by Zhang et al. [ZAM12]. In this framework,

software is labeled to indicate which cache accesses need to be protected to pre-

vent timing channel leakage. Each instruction in the program has a read label

and a write label. The read label defines timing of an instruction, setting an

upper bound on the label of hardware that can affect the execution time of this

instruction. The write label defines hardware states that an instruction can in-

fluence, setting a lower bound on the label of hardware that the instruction can
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modify. We defines two labels, L (low) and H (high), which satisfies L ⊆ H.

Applying the labels to the previous victim code, we have the following labeled

code, in which the first label in brackets is the read label, and the second one is

the write label.

1 i f ( s e c r e t )

2 h = l 1

3 e l s e

4 h = l 2

5 l 1 = 0

[H, H]

[H, H]

[H, H]

[ L , L ]

Since line 2 is labeled with [H, H], l1 is stored in the cache and labeled as

H. When line 5 gets executed, it cannot access l1 through the cache because

the read label of this instruction is L, which means the execution time of this

instruction can only be affected by cache lines that are labeled as L. Hence, the

memory access results in a cache miss and the data is fetched from the memory

as if the data is not in the cache. With this design, the value of the secret will not

be revealed through the total execution time.

However, this solution will possibly introduce two copies of the same data

in the cache. A correct cache design needs to ensure these copies are consistent

with respect to the memory. Indeed, the language-based protection [ZAM12]

only specifies the timing behavior of the underlying hardware and omits the ac-

tual hardware implementation. It is therefore the hardware designer’s responsi-

bility to implement a hardware design that is functionally correct and conforms

to the requirements of read and write labels. We target to implement such a

cache design in this section.
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3.6.3 Baseline Partitioned Cache

We assume the baseline cache is divided into two partitions, H and L. The par-

tition is done at the granularity of cache ways. Figure 3.22 shows an example

partitioned cache with four cache ways. The cache lines in H partition all share

the same security label H, while the cache lines in L partition have security label

L. When an instruction fetches a cache block from memory, the write label of

the instruction decides which partition the cache block will be stored.

3.6.4 Problem: Dirty Bit Leakage

During our design of a secure cache, we found that the dirty bit of a cache line

can also lead to information leakage. To demonstrate the problem, consider the

following victim code.

72



1 i f ( s e c r e t )

2 h1 = l 1

3 e l s e

4 h2 = l 1

5 h3 = h1

6 l 2 = l 3

[H, H]

[H, H]

[H, H]

[ L , L ]

[ L , L ]

Assume the secret bit is ‘1’, both h1 and l1 are fetched into the cache and

stored in the H partition. When line 5 gets executed, however, access to h1

should be a cache miss since the read label is L. Hence, the cache fetches h1

from memory. When the memory response arrives at the cache, we discard

the data from memory and move the existing copy of h1 from H partition to L

partition. This is because the copy in the cache is the most updated version of

h1. However, this design brings up a security issue.

Assume l2 and l3 in line 6 are fetched into the cache and evict h1 as a result.

Since h1 is dirty, the cache needs to write it back to memory. Without a writeback

queue, the eviction of a dirty block may stall the cache from processing other

requests. Even if a writeback queue exists, the queue can get full and stall the

CPU from accessing the cache. On the other hand, if the secret bit is ‘0’, then

h1 stays clean after line 5. In this case, when h1 gets replaced by l2 or l3, the

cache can simply invalidate h1 without writing it back to memory. Comparing

the two cases, we find that the dirty bit of a cache line may reveal confidential

information through timing channels. A secure cache design must handles the

leakage caused by the dirty bit.
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3.6.5 Solution 1: Mark All Cache Lines Dirty (DirtyCache)

We propose a simple cache design that removes the timing channel leakage

through dirty bit. The basic idea is to make dirty bit contain no secret infor-

mation. To achieve this, our design marks every cache line being fetched into

the cache dirty, hence the name “DirtyCache”. Since all cache lines are dirty,

dirty bit contains no useful information for the attacker. Beside a dirty bit, each

cache line also has a one-bit security label T to indicate its security level. We

divide the cache into two partitions, L partition and H partition. Cache lines

in L partition has a security label L while cache lines in H partition has a secu-

rity label H. Next, we detail the DirtyCache design by describing its operations

under different security labels of an instruction. As before, the first label in the

bracket is the read label, and the second label is the write label.

Instruction Label = (L, L)

• Cache hit: the cache controller checks the security label T of the cache line

being accessed.

– If T = L, the cache controller treats the hit as a normal hit in a normal

cache.

– If T = H, the cache controller treats the access as a cache miss because

the instruction should not see this cache line given its read label is

L. A cache line in L partition is chosen for eviction and a memory

request is issued for the access. When the memory response returns,

the cache controller moves the cache line from H partition to L parti-

tion, changing its label from H to L.
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• Cache miss: a cache line in L partition is chosen for eviction and a memory

request is issued for the access.

Instruction Label = (H, H)

• Cache hit: this is treated as a normal cache hit as in a normal cache because

the instruction is able to see all the cache lines in the cache.

• Cache miss: A cache line in H partition is chosen for eviction and a mem-

ory request is issued for the access.

Instruction Label = (L, H)

• Cache hit: the cache controller checks the security label T of the cache line

being accessed.

– If T = L, the cache controller treats the hit as a normal hit in a normal

cache.

– If T = H, the cache controller treats the access as a cache miss because

the instruction should not see this cache line given its read label is

L. A cache line in H partition is chosen for eviction and a memory

request is issued for the access. When the memory response returns,

the cache controller discards the memory response and uses the ex-

isting copy in the cache.

• Cache miss: a cache line in H partition is chosen for eviction and a memory

request is issued for the access.

75



Instruction Label = (H, L)

• Cache hit: this is treated as a normal cache hit as in a normal cache because

the instruction is able to see all the cache lines in the cache.

• Cache miss: A cache line in L partition is chosen for eviction and a memory

request is issued for the access.

The complication of the DirtyCache design is mostly in handling an access

that has a read label of L while the data exists in the H partition of the cache—the

timing channel in our code example. DirtyCache eliminates the timing channel

with a simple design. However, marking all cache lines dirty can introduce

significant performance overhead, because any eviction of a cache line requires

writing the data back to memory, regardless of whether the cache line has been

written or not. To minimize this performance overhead, we propose a more effi-

cient cache design called “RelCache” that gets rid of the DirtyCache restrictions

on dirty bits.

3.6.6 Solution 2: Use Relative Dirty Bits (RelCache)

In this cache design, we allow one memory block to have two copies with differ-

ent security labels in the cache. For example, the cache can contain both memory

block M with label L and memory block M with label H. To maintain the coher-

ence of different copies, we make the dirty bit of the L copy to be relative to the

H copy. In other words, the L copy is dirty only if the L copy is different from

the H copy. The dirty bit of the H copy is defined the same as a normal cache

(relative to the memory). As we will see below, this design choice is necessary
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to efficiently remove the timing channel caused by the dirty bit. We describe the

design of RelCache by showing how the cache controller reacts to cache hits and

misses under different security labels. For cache hits, we discuss read and write

accesses separately because a read access does not affect the dirty bit while a

write access can change the dirty bit of a cache line.

Instruction Label = (L, L)

• Read access & cache hit: the cache controller checks the security label T of

the cache line getting hit (C1).

– If T = L, the cache controller treats the hit as a normal hit in a normal

cache.

– If T = H, the cache controller treats the access as a cache miss. A cache

line C2 in L partition is chosen for eviction. If C2 has another copy C′2

with label H in the H partition, the cache controller checks the dirty

bit of C2. If C2 is dirty, the cache controller write it back to memory

and invalidate C′2, since C′2 is a stale copy. If C2 is clean, C2 is simply

invalidated. If C2 is the only copy in the cache, the cache controller

evicts C2 normally. After the eviction, the cache controller sends a

memory request to fetch the data for the read access. When the mem-

ory response arrives at the cache, the cache discards the response and

copy the data from cache line C1 to the L partition. The new cache

line is marked as clean (relative to the H copy) with a security label

L. In this design, the dirty bit of the new cache line does not contain

any secret information from H since it is always clean.
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– If there are two copies in the cache, the cache responds with the L

copy, which is the most updated version of the data.

• Write access & cache hit: the operations in this case are identical to the

previous case, except that the new cache line is marked as dirty because

the access is a write.

• Cache miss: A cache line C2 in L partition is chosen for eviction. If C2

has another copy C′2 with label H in the H partition, the cache controller

checks the dirty bit of C2. If C2 is dirty, the cache controller write it back

to memory and invalidate C′2, since C′2 is a stale copy. If C2 is clean, C2 is

simply invalidated. If C2 is the only copy in the cache, the cache controller

evicts C2 normally. After the eviction, the cache controller send a memory

request to fetch the data. When the memory response arrives at the cache,

mark the new cache line as clean with label L.

Instruction Label = (H, H)

• Read access & cache hit: If there are two copies in the cache, the cache

responds with the L copy. Otherwise, the access is treated as a normal

cache hit.

• Write access & cache hit: the cache controller checks the security label T of

the cache line getting hit (C1).

– If T = L, the controller checks the dirty bit of C1. If C1 is clean, the

access writes to the cache and also write back to memory. This is be-

cause the write label of this instruction is H, which disallows chang-

ing the dirty bit of L partition. By writing back to memory, C1 remains
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to be clean in the cache. On the other hand, if C1 is dirty, the access

only needs to write to the cache.

– If T = H, the access writes to the cache.

– If there are two copies in the cache, the controller writes to the H copy

and invalidates the L copy.

• Cache miss: A cache line C2 in H partition is chosen for eviction. After

the eviction, the cache controller send a memory request to fetch the data.

When the memory response arrives at the cache, mark the new cache line

as clean with label H.

Instruction Label = (L, H)

• Read access & cache hit: the cache controller checks the security label T of

the cache line getting hit (C1).

– If T = L, the cache controller treats the hit as a normal hit in a normal

cache.

– If T = H, the cache controller treats the access as a cache miss. A cache

line C2 in L partition is chosen for eviction. If C2 has another copy C′2

with label H in the H partition, the cache controller checks the dirty

bit of C2. If C2 is dirty, the cache controller write it back to memory

and invalidate C′2, since C′2 is a stale copy. If C2 is clean, C2 is simply

invalidated. If C2 is the only copy in the cache, the cache controller

evicts C2 normally. After the eviction, the cache controller sends a

memory request to fetch the data for the read access. When the mem-

ory response arrives at the cache, the cache discards the response and

uses the existing copy in the cache.
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– If there are two copies in the cache, the cache responds with the L

copy, which is the most updated version of the data.

• Write access & cache hit: the operations in this case are identical to the

previous case.

• Cache miss: A cache line C2 in L partition is chosen for eviction. If C2

has another copy C′2 with label H in the H partition, the cache controller

checks the dirty bit of C2. If C2 is dirty, the cache controller write it back

to memory and invalidate C′2, since C′2 is a stale copy. If C2 is clean, C2 is

simply invalidated. If C2 is the only copy in the cache, the cache controller

evicts C2 normally. After the eviction, the cache controller send a memory

request to fetch the data. When the memory response arrives at the cache,

mark the new cache line as clean with label H.

Instruction Label = (H, L)

• Read access & cache hit: If there are two copies in the cache, the cache

responds with the L copy. Otherwise, the access is treated as a normal

cache hit.

• Write access & cache hit: If there are two copies in the cache, the controller

writes to the L copy. Otherwise, the access is treated as a normal cache hit.

• Cache miss: A cache line C2 in L partition is chosen for eviction. If C2

has another copy C′2 with label H in the H partition, the cache controller

checks the dirty bit of C2. If C2 is dirty, the cache controller write it back

to memory and invalidate C′2, since C′2 is a stale copy. If C2 is clean, C2 is

simply invalidated. If C2 is the only copy in the cache, the cache controller

evicts C2 normally. After the eviction, the cache controller send a memory
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request to fetch the data. When the memory response arrives at the cache,

mark the new cache line as clean with label L.

RelCache removes the dirty bit leakage by maintaining a relative dirty bit

when there are two copies of a data in the cache. This design avoids the re-

striction of dirty cache, which marks every cache line dirty, reducing the per-

formance overhead of timing channel protection. Although RelCache can in-

troduce two copies of a data, which can waste some cache space, the amount

of shared data between H and L instructions is usually small in common pro-

grams. With the language-based protection framework, RelCache presents a

secure and efficient solution to defend against timing channel attacks within a

program.
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CHAPTER 4

MEMORY CONTROLLERS

While timing channel attacks and their countermeasures have been studied in

the context of shared caches, to the best of our knowledge, timing channels

through a shared memory channel have not yet been studied at the hardware

architecture level. In this chapter, we discuss our findings on memory controller

timing channels and propose several protection schemes. Section 4.1 describes

timing channel attacks we found in a shared memory controller. Section 4.2

proposes a protection scheme based on Temporal Partitioning (TP). Section 4.3

introduces a more efficient protection scheme called SecMC-NI by interleaving

requests that access different banks and ranks of DRAM. To further improve the

performance of protection schemes, we propose SecMC-Bound, which enables

a tradeoff space between performance and security in Section 4.4.

4.1 Attacks

4.1.1 Memory Controller Interference

Memory requests from different security domains contend for the shared

DRAM memory and can affect the latency of each other, which opens a tim-

ing channel. This timing channel is contention-based, much like the on-chip

network timing channel. However, the memory timing channel is much more

complicated because of the way memory works. In DRAM memory, a memory

transaction lasts for tens of cycles, during which it can affect the scheduling of

following memory transactions. Multiple memory transactions can be in flight
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Figure 4.1: A conventional memory controller.

simultaneously in a pipelined fashion, given that they satisfies the timing con-

straints of a specific DRAM. For example, two memory read requests to different

rows of the same bank must be separated by at least tRAS +tRP cycles. More details

about the timing constraints in DRAM memory can be found in [JNW07].

To provide timing channel protection for memory controllers, let us first un-

derstand the sources of interference in conventional memory controller archi-

tecture, which is shown in Figure 4.1. A successful memory access takes the

following steps:

1. It is enqueued into one of the request queues based on the address.

2. It wins bank arbitration in the bank arbiter.

3. It wins transaction scheduler arbitration.

4. It gets sent to the DRAM devices.

The First-Ready First-Come First-Served (FR-FCFS) [RDK+00] scheduling al-

gorithm is used for the baseline memory controller. As shown below, there are

three sources of interference in the baseline memory controller.
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(a) Bank Arbitration Interference

A: from security domain 0, for bank 0

B: from security domain 1, for bank 1

Without B With B

Time (cycle) Time (cycle)

Scheduler Arbitration

0 1 2 3 4 0 1 2 3 4

(b) Scheduler Arbitration Interference

A: from security domain 0, for bank 0

B: from security domain 1, for bank 0

Without B With B

Time (cycle) Time (cycle)

Scheduler Arbitration

0 1 2 3 4 0 1 2 35 36...

(c) DRAM Device Interference

Figure 4.2: Interference in memory controllers.

Queueing Structure Interference.

The baseline memory controller has a separate queue for each combination of

the ranks and banks (e.g., if there are 3 ranks and 4 banks, a typical memory

controller will have 12 queues). This ensures that requests for each bank are put

into a separate queue. Although this queueing structure is beneficial for exploit-

ing bank-level parallelism in DRAM accesses, it introduces interference among

memory accesses from different security domains. In this queueing structure, a

queue can mix memory requests from different security domains, which are de-

noted by different patterns in Figure 4.1. As shown in Figure 4.2(a), Request A
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from security domain 0 can be delayed in the queue by Request B from another

security domain 1 if the bank arbiter schedules Request B prior to Request A.

Interference in the queueing structure also occurs whenever the memory

controller stalls the requests to a particular bank when that bank’s request queue

is full. If security domain 0 fills the request queue of bank 0 and stalls the mem-

ory requests from security domain 1, security domain 1 can learn that security

domain 0 is sending many memory requests to bank 0.

Scheduler Arbitration Interference.

The transaction scheduler also causes interference. As can be seen in Fig-

ure 4.2(b), suppose Request A and Request B are accessing different banks and

they both win bank arbitration in cycle 0. Without Request B, Request A wins the

scheduler arbitration and is sent to the DRAM at cycle 0. However, if Request

B exists and arrives in the queue earlier than Request A, the FR-FCFS scheduler

will favor Request B in arbitration, thus delaying Request A to the next cycle.

This interference changes the timing of Request A.

DRAM Device Interference.

Resource contention in DRAM device components such as the command bus,

the data bus, banks, and ranks can also create timing channels. For example, as-

sume Request A and B are from different security domains and intend to access

the same bank of a rank. Request A arrives at the queue at cycle 2 and Request

B arrives at cycle 0. Without Request B, Request A wins bank arbitration and

scheduler arbitration at cycle 2. However, if Request B exists and is scheduled
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at cycle 0, Request A cannot win scheduler arbitration at cycle 2 even if it wins

bank arbitration, because the DRAM device cannot serve two memory requests

to the same bank concurrently. In an open page policy, if the second request is

a row hit, it needs to wait until the first request finishes I/O gating. In a close-

page policy, the second request needs to wait even longer, because it cannot be

scheduled until the bitline is precharged. As shown in Figure 4.2(c), Request A

is not scheduled until cycle 35 because the bank has been busy serving Request

B.

The interference problem is not limited to FR-FCFS scheduling algorithm,

but exists for most of current memory scheduling algorithms (i) because queue-

ing structures mix requests from different security domains, (ii) because the ar-

bitration of the transaction scheduler depends on the dynamic demands of dif-

ferent security domains, (iii) and because of the properties of DRAM devices.

All these sources of interference can be used as timing channels to derive the

memory usage characteristics of security domains, which can leak secret infor-

mation. Next, we show two timing channel attacks that exploit the memory

interference.

4.1.2 A Side-Channel Attack on RSA

This side channel attack shows how a private key of an RSA decryption pro-

gram can be compromised by exploiting the interference in memory accesses.

The system setup is shown in Figure 4.3. The system has two cores, each with a

private direct-mapped L1 cache. The RSA decryption algorithm runs on Core 0

while an attack program is running simultaneously on Core 1.
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Core 0
RSA

$L1
Bus

Memory

Core 1
Attacker

$L1

Figure 4.3: System setup for an RSA attack.

x = C
f o r j = 1 to n

x = mod( x2 , N)
i f d j == 1 then

x = mod( xC , N)
end i f

next j
re turn x

Figure 4.4: Square and multiply algorithm for RSA: C is the encrypted
message, x is the decrypted message, N is the product of two
large prime numbers, d is the RSA private key, and n is the
number of bits in the key.

The RSA decryption algorithm uses a private key to decrypt an encrypted

message. It is often implemented with the square and multiply algorithm to

perform fast exponentiation, as shown in Figure 4.4. In this implementation, the

bits in the private key are checked one by one, and a modulo operation is per-

formed only when the bit is ‘1’. In this attack example, the memory addresses

are configured so that when this modulo operation is performed, a cache miss

occurs. In other words, the number of memory requests for the RSA algorithm

is directly dependent on the number of ‘1’ bits, or the Hamming weight, of the

private key. The attacker issues memory requests to the DRAM continuously

and measures the time to finish those requests.
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Figure 4.5: RSA side-channel attack example.

Figure 4.5 shows the execution time of the attack program as a function of

the Hamming weight of the private key. As can be seen, the attacker’s execu-

tion time has a direct correlation with the Hamming weight, meaning that the

attacker can estimate the number of 1s in the private key by simply measuring

its own execution time. The attack can succeed because the memory controller

is shared and the interference between the memory requests from different pro-

grams leaks information.

4.1.3 A Covert-Channel Attack

In this shared memory covert-channel example, one adversary tries to send in-

formation to another adversary when direct communication between them is

disallowed. The system setup is similar to Figure 4.3 except that now Adver-

sary 0 runs on Core 0 and Adversary 1 runs on Core 1. The goal of Adversary

0 is to send the sequence ‘10010110’ to Adversary 1. Adversary 0 achieves this

goal by dynamically changing its memory demand, which affects the latency of

memory requests from Adversary 1. To send a ‘0’, Adversary 0 does not issue

any memory request for a period of time. To send a ‘1’, Adversary 0 sends many

88



Time (cycle)

800

700

600

500

400

300

200

100

0
20000 40000 60000 80000 100000 120000 140000

# 
of

 M
em

or
y 

R
eq

ue
st

s 
in

 L
as

t 
50

00
 C

yc
le

s 
fo

r A
dv

er
sa

ry
 1

0

Figure 4.6: A covert-channel attack example.

memory requests. Meanwhile, Adversary 1 keeps sending memory requests

and tracks the dynamic throughput it can achieve using a software counter.

Figure 4.6 shows the memory throughput observed by Adversary 1 over the

last 5,000 cycles. As can be seen, the throughput shows a pattern that corre-

sponds to the bit stream that Adversary 0 intends to send. When the through-

put is low, Adversary 1 can infer that Adversary 0 is sending a lot of memory

requests, and interprets the bit being sent as a ‘1’. Otherwise, the bit being sent

is a ‘0’. Using the interference in the memory, Adversary 1 can fully recover

the information that Adversary 0 sends, proving the feasibility of this covert

channel attack.

4.2 Temporal Partitioning (TP)

This section introduces a timing channel protection scheme called Temporal Par-

titioning that eliminates aforementioned sources of memory interference. Tem-
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poral partitioning enforces complete noninterference between different security

domains, hence providing bi-directional timing channel protection.

4.2.1 Protection Mechanisms

Queueing Structure Protection

To eliminate interference among memory requests from different security do-

mains in the same request queue, the queueing structure proposed in this design

includes queues for each combination of ranks and security domains instead

of each combination of ranks and banks. Figure 4.7 shows the new queueing

structure. With per security domain queueing structure, memory requests from

different security domains are separated and stored in different queues, and

therefore, bank arbitration cannot cause interference among them. Interference

can still exist between requests in the same queue, however, they belong to the

same security domain, so the interference is benign. In order to exploit bank

parallelism, this scheme also requires scheduling logic that scans the queue for

requests to an idle bank. Similar logic is also used in a conventional open page

memory controller to find requests to open rows.

Scheduling Protection

Concurrent memory accesses from multiple security domains cause both arbi-

tration interference and DRAM device interference. These two types of interfer-

ence can be eliminated if only one security domain uses memory resources at a

time. Thus, we propose Temporal Partitioning (TP), which divides the time into
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Arbiter

Transaction Scheduler

To DRAM device
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Arbiter

SD N
Arbiter

Figure 4.7: Queueing structure per security domain.

{Tturn

SD 0 SD 1 SD N

DRAM Utilization
Time

Figure 4.8: Static time-slot allocation in temporal partitioning.

fixed-length turns. During each turn, only requests from a particular security

domain, which we say is active, can issue.

Figure 4.8 illustrates the high-level idea of TP. The length of a turn is defined

as Tturn. During each turn, requests of the active security domain are scheduled

normally, but requests from other domains are not allowed. While requests

within each domain can cause interference with each other, such intra-domain

interference is benign as they cannot leak information to another domain. TP al-

lows requests of the active security domain to be dynamically scheduled, which

is good for performance. At the end of each turn, the next security domain is

selected and activated using a fixed, static schedule. The implementation dis-

cussed in this work uses a strict round-robin static schedule, however, any other

static schedule will suffice.
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Row Buffer Policy

In a DRAM cell, requests for data already in the row buffer (sense amplifier) are

much faster than others. In an open page row-buffer management policy, the

most recently activated row is left in the row buffer of the bank until another

row in that bank must be accessed. This policy is beneficial for workloads that

have a lot of row locality (and are therefore likely to reuse data already in the

row buffer). In contrast, a close-page policy immediately precharges the bank

in anticipation of an access to a different row. The close-page policy has better

memory access times for consecutive accesses to different rows, although it can

no longer exploit row locality. Therefore, close-page policies are preferable for

workloads with little row locality.

Since during a turn the active security domain is allowed to cause interfer-

ence among its own memory requests, it seems reasonable, at first inspection, to

allow any of these policies or a hybrid scheme to best suit the particular work-

load. However, the scheme as described thus far does nothing to handle the

data available in the row buffer before switching to the next turn in an open-

page policy. As a result, an adversary can learn about the data access pattern of

another security domain through the timing difference between row buffer hits

and row buffer misses.

This channel can be eliminated by issuing a precharge command to every

bank at the end of a turn. Unfortunately, contemporary DRAM chips cannot

meet the power criteria necessary to issue a precharge to every bank in a suffi-

ciently small time interval. Further, precharging only the banks that were actu-

ally accessed does not work as this implies a variable number of precharges at
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Read Transaction tRAS +tRP

Write Transaction tCWD+tBURS T +tWR+tRP+tRCD

Table 4.1: Close-page DRAM timing analysis.

the end of the turn and causes yet another timing channel. The TP protection

scheme thus requires a close-page policy for security and better performance.

Dead Time

With only the aforementioned restrictions, a memory transaction could be is-

sued before the turn changes, but remain in flight at the beginning of the next

turn, possibly causing interference to memory requests from the next security

domain. This interference is illustrated in Figure 4.9(a). Therefore, an inter-

val of time, called the dead time, is required at the end of each turn to pre-

vent new transactions from being issued. The dead time must be long enough

to complete any in-flight transactions before the turn transitions, as shown in

Figure 4.9(b). In other words, the dead time must be no less than the worst

case time Tw to drain either a read or write transaction. The times required

to drain either of these transactions (and precharge the bitline after the access)

are shown in Table 4.1 using DRAM timing parameters, which can be found

in commercial DRAM datasheets. Based on our study of several commercial

DRAM datasheets, the time to drain write transactions is usually longer than

the time to drain read transactions. Therefore,

Tdead = Tw = tCWD + tBURS T + tWR + tRP + tRCD. (4.1)
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(b) Dead time.

Figure 4.9: Dead time to remove interference from in-flight transactions.

Refresh Timing Channel.

In a conventional memory controller, no transactions can be issued when a bank

is being refreshed. However, when a bank that needs to be refreshed is already

being accessed, the refresh is stalled until the in-flight commands to that bank

are completed. This means the actual time the refresh takes place depends on

the memory transactions and therefore memory access patterns and data of the

active security domain. Figure 4.10 shows the interference caused by a stalled

refresh. Without Request A, the refresh can finish before the end of SD 0’s turn,

and Request B can be issued as normal. However, if Request A exists and it

delays the refresh, then it is possible that the refresh cannot finish until the next

turn, because the time to finish a refresh, tRFC is larger than Tdead. This indirectly

delays the schedule of Request B.

This type of interference is caused by a refresh crossing the border between

two consecutive turns. To eliminate this interference, the dead time can be in-

creased to at least as long as the time to complete a refresh, tRFC, plus the time

required to drain any in-flight transaction, Tw. However, this is overly conser-
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Figure 4.10: Interference from a stalled refresh.

vative if done unilaterally for each turn. Instead, since the originally scheduled

time for each refresh is public information, only turns during which refresh is

scheduled will have a dead time that is increased by tRFC. This eliminates the

refresh timing channel for any chosen turn length value since, if the turn length

is greater than tRFC + Tw, any refresh issued during a particular turn will always

finish before the end of that turn. If the turn length is less than tRFC +Tw, the dead

time is larger than the turn length and the active security domain is blocked for

its entire turn. Because there is no access from the active security domain, there

is no interference between a memory access and a refresh.

Turn Length Tradeoff

The length of a turn affects the performance of temporal partitioning. There is

no upper limit on the turn length, but the turn length should at least be greater

than Tw to avoid starvation. When Tturn is equal to Tw, at most one request can

be scheduled in one turn and it can only be scheduled at the first cycle of the

turn because of the dead time. The optimal turn length depends on the work-
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load and cache configuration among other system parameters. The tradeoffs

involved are best explored by characterizing the sources of overhead in tempo-

ral partitioning.

The first source of overhead is the dead time, which wastes memory band-

width for a fixed interval at the end of each turn. The dead time comes at the

end of every turn, therefore the overhead depends on the number of turns. As

the turn length increases, the number of turns will reduce. As a result, the dead

time overhead is less with a longer turn length. On the other hand, as the turn

length increases, the maximum time a request can spend blocked in the trans-

action queue while its security domain is inactive also increases. Therefore, a

longer turn length will be desirable when the throughput is the main concern

and a shorter turn length will be desirable when the latency is important.

4.2.2 Performance Optimizations

Bank Partitioning (BP).

In TP, the memory bandwidth loss due to the dead time represents one of the

largest sources of overhead. The dead time ensures that memory requests from

two consecutive turns cannot interfere with each other by draining all in-flight

transactions at the end of a turn before issuing any memory request from a new

turn. Unfortunately, the dead time needs to be quite conservative in order to

avoid interference even in the worst case where requests from two turns access

the same bank of a rank.
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If it can be guaranteed that requests from two consecutive turns cannot ac-

cess the same bank, the dead time can be significantly reduced because in-flight

transactions do not need to be drained before issuing requests from a new do-

main. TP can use bank partitioning among security domains or turns to guar-

antee this property. For example, different security domains can be mapped to

different banks in the main memory. Alternatively, TP can restrict which mem-

ory banks can be used at the beginning and the end of each turn to ensure that

there cannot be bank conflicts between two consecutive turns. With this opti-

mization, the dead time can be reduced to the worst case time interval between

two consecutive memory accesses to different banks. Considering the power

constraint and different combinations of consecutive memory accesses to differ-

ent banks, the dead time can be determined by the following equation:

Tdead = max(tFAW − 3 ∗ tRRD, tCWD + tBURS T + tWTR,

tCAS + tBURS T + tRTRS − tCWD). (4.2)

For the DRAM module we used in the experiments, this new dead time is

only 18 cycles compared to 43 cycles without bank partitioning.

Application-Aware Turn Length.

In the baseline design, temporal partitioning divides the memory bandwidth

evenly among security domains using the static round-robin scheduling with

the same turn length for all security domains. In order to distribute the memory

bandwidth more effectively for a given workload mix, TP can be optimized to

use a different turn length for each security domain and also schedule turns in

an order that matches the workload characteristics. As long as the turn lengths
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and schedule are not affected by the dynamic memory demand of each secu-

rity domain, temporal partitioning still ensures that there is no timing channel

between security domains.

4.2.3 Evaluation

Experimental Setup

We evaluate the security and performance of temporal partitioning through

simulation studies. DRAMSim2 [RCBJ11] is used to model the memory con-

troller as well as ranks, banks, and channels of a DRAM. To study the perfor-

mance impact on realistic benchmarks, DRAMSim2 is integrated into an archi-

tecture simulator, ZSim [BBB+11]. We model a multi-core processor, and each

core has a private L1 cache. The L2 cache is shared, but partitioned to remove

interference among cores. This configuration was chosen to evaluate the impact

of memory timing channel protection schemes without the impact of cache in-

terference. We model a single memory channel with 8 ranks and 8 banks per

rank. The detailed configuration parameters are shown in Table 4.2.

We use multi-program workloads constructed from SPEC CPU2006 bench-

mark suites to evaluate the performance. To evaluate the performance under

different memory intensities, we run eight copies of the same program on the

8-core processor. Each program fast-forwards for 1 billion instructions and then

enters detailed simulation mode, in which the memory requests are simulated

in cycle-accurate manner. The simulation terminates when all programs have

executed at least 100 million instructions. We only take the first 100 million in-
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Processor
ISA x86

Core count and frequency 2/4/8 cores, 2.0GHz
ROB size 128

Issue width 4
Cache

L1 I-cache 32KB/4-way
L1 D-cache 32KB/4-way

L2 Cache
2/4/8 MB

8 ways per core
DRAM

DRAM bus frequency 667MHz

DRAM configuration
1 channel, 8 ranks,

8 banks/rank
Total capacity 16GB

DRAM Timing Parameters (DRAM cycles)
tRC = 34, tRCD = 10, tRAS = 24, tFAW = 20
tWR = 10, tRP = 10, tRTRS = 1, tCAS = 10
tRT P = 5, tBURS T = 4, tCCD = 4, tWTR = 5

tRRD = 4, tREFI = 7.8us, tRFC = 107

Table 4.2: Configuration parameters for ZSim and DRAMSim2 simulators.

structions of each program to calculate the IPC. Figure 4.11 shows the L2 misses

per kilo instructions (MPKI) for different SPEC benchmarks.

We use weighted speedup as the performance metric. For a system with con-

currently running programs, weighted speedup is defined as the sum of each

program’s IPC normalized to the IPC when the program is running by itself:

Weighted S peedup = Σ(IPCi/S ingleIPCi) (4.3)

The weighted speedups are normalized to the insecure baseline, which is FR-

FCFS scheduling [ZR97] in our experiments. We used 24 SPEC benchmarks and

show 12 representative benchmarks in graphs. The benchmarks are ordered

based on the memory intensity (MPKI) with more memory intensive bench-
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Figure 4.11: Memory intensity study of SPEC2006 benchmarks.

marks on the right. Note that the geometric mean of each figure is calculated

using all 24 benchmarks.

Security Evaluation

Temporal partitioning eliminates the memory interference by modifying the

queueing structure and the scheduling algorithm of a conventional memory

controller. To test if memory interference has indeed been eliminated, multi-

program workloads comprised of SPEC2006 benchmarks are run to record the

timing of memory requests. We use gem5 [BBB+11] to collect memory request

traces in 10 million instructions for each benchmark, then these traces are used

in pairs of two (T0, T1) to study the security of a two-core system, in which each

core runs in a different security domain. The traces are fed into DRAMSim2 to

simulate the cycle-level behavior in the memory controller and DRAM device.

To verify that temporal partitioning can protect against timing channel at-

tacks, a benchmark, T0, from one security domain is fixed and run with a dif-
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Figure 4.12: Memory return time difference of T0 running with difference
T1s.

ferent benchmark, T1, from another security domain. If the memory controller

completely eliminates interference, the return time of each memory request in

T0 should always be the same regardless of what benchmark T1 is. The results

for a fixed T0 with different T1s are compared. Figure 4.12 shows one example

of the comparison. The Y axis is the return time difference for each memory re-

quest in T0 when bzip is used for T0 and T1 is changed from astar to mc f . Two

different turn lengths are used for TP, namely Tw and 4096 memory cycles. As

can be seen, both T P − Tw and T P − 4096 show a flat line that equals 0, meaning

the timing of T0’s memory requests are not affected by which benchmark T1 is.

In contrast, The result for FR-FCFS shows a huge difference after T1 changes

from one benchmark to another, which indicates the existence of memory inter-

ference and a timing channel. Every possible combination of benchmark pairs

was compared in this way, and the results show that with temporal partition-

ing protection, the return time of every memory request from T0 stays the same

regardless of what benchmark T1 runs.

The timing channel protection is still effective when there are more than two

security domains. To test the security of increasing the number of security do-
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Figure 4.13: Memory return time difference with 4 security domains.

mains, experiments are run with four traces. T0 is kept constant and (T1, T2,

T3) are changed from (astar, astar, astar) to (mc f , mc f , mc f ). These two combi-

nations were intentionally chosen because astar is not memory-intensive while

mc f is very memory-intensive. The results for the case where T0 is bzip2 are

shown in Figure 4.13. Similar to the results for two security domains, the com-

parison passes for all combinations, which shows that TP eliminates the mem-

ory interference for multiple security domains. This security evaluation is run

for all benchmarks in SPEC2006.

Performance Evaluation

Performance Overhead. The static scheduling and the dead time in tempo-

ral partitioning introduce performance overhead compared to an insecure base-

line. To quantify this performance overhead, the SPEC2006 benchmarks are run

with the baseline memory controller and with TP. In these experiments, the turn

length of TP is set to be 128 cycles.
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Figure 4.14: Performance overhead of TP.

Figure 4.14 shows the performance comparison between the baseline and

TP. The weighted speedup of TP is normalized to that of the insecure baseline.

Figure 4.14 also shows the performance of different number of security domains

to study the scalability effect.

For 2 security domains, TP achieves 70% performance of the baseline. For

non-memory intensive benchmarks, TP incurs negligible performance overhead

compared to the baseline. However, as the memory intensity increases, the

performance gap between TP and the baseline grows significantly. The over-

head exceeds 60% for benchmarks such as lbm and mc f . The performance over-

head mainly comes from long queueing delay of the static turn scheduling and

wasted bandwidth during the dead time. This performance overhead is also re-

flected as the number of security domains scales up. For 8 security domains, TP

incurs 63% performance overhead on average compared to the baseline. This is

mainly because a security domain needs to wait for more turns before issuing

its requests as the number of security domains increases.
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Figure 4.15: Effect of turn length on performance overhead.

Effect of Turn Length. As we discussed earlier, the turn length of TP scheme

can affect the performance of security domains. Longer turn length allows more

requests to be issued in each turn, but also leads to longer queueing delay for

some requests. Figure 4.15 shows the performance of TP with different turn

lengths. Again, all the performance results are normalized to that of insecure

baseline. Results for both 2 and 8 security domains are presented.
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Figure 4.16: Performance improvement with bank partitioning.

For most benchmarks, the performance of TP increases initially as the turn

length increases. However, once the turn length reaches some certain value

(mostly 128 in these experiments), the performance of TP starts to decrease.

These results illustrates the trade-off between delays and bandwidth associated

with a turn length. Benchmarks that are delay-sensitive (e.g., libquantum) tend

to favor shorter turn length, while benchmarks that are bandwidth-sensitive

(e.g., mcf) tend to favor longer turn length.

Bank Partitioning. We studied the effectiveness of bank partitioning as a

performance optimization technique. As discussed earlier, bank partitioning

reduces the dead time from 43 cycles to 18 cycles, hence significantly reducing

wasted bandwidth. Figure 4.16 shows the performance comparison between TP

and BP for 8 security domains. Thanks to the shorter dead time, BP outperforms

TP by 50% on average, achieving 56% performance of the insecure baseline.
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4.3 SecMC-NI

Temporal Partitioning defeats memory timing channel attacks, but comes with

high performance overhead due to the wasted bandwidth in dead time. In this

section, we propose SecMC-NI (NI stands for noninterference), a secure mem-

ory controller that provides efficient memory scheduling by tightly interleaving

requests from different ranks and banks.

4.3.1 Existing Protection Schemes

After we propose Temporal Partitioning (TP) as a timing channel protection

mechanism, a few new techniques [FWZ+16, SGS+15] have been developed

to improve the performance of TP while maintaining the security guarantee

against memory timing channels. Researchers have proposed to use rank par-

titioning (RP) with temporal partitioning. In rank partitioning, the physi-

cal memory is partitioned among different security domains. Rank partition-

ing [SGS+15] restricts security domains to place data in different ranks. This

restriction ensures that memory requests from consecutive turns always access

different ranks. The dead time between requests thus can be much shorter (6 cy-

cles using our DRAM model). However, rank partitioning seriously constrains

data placement, making it difficult to deploy in practice. If the number of se-

curity domains is large, rank partitioning may be simply infeasible due to the

limited number of ranks. For example, typical systems have no more than 8

ranks per channel. In cloud computing, rank partitioning may imply that a sys-

tem cannot keep more than 8 virtual machines in memory. Rank partitioning

also leads to high memory fragmentation. VMs with a small memory footprint
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SD0
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SD0 SD1 SD2 SD3 SD4 SD5 SD6 SD7

Figure 4.17: Bank triple alternation schedule example.

waste allocated memory while VMs with a large memory footprint suffer from

insufficient memory.

To avoid the disadvantages of rank partitioning, Shafiee et al. [SGS+15] pro-

posed Bank Triple Alternation (BTA), which divides the memory banks into

three bank groups. Consecutive memory requests are restricted to always ac-

cess different bank groups, which ensures that there cannot be any bank conflict

between turns. This enables using short (18 cycle) turns. As a drawback, only a

subset of banks can be accessed in each turn.

Figure 4.17 shows an example BTA schedule for 8 security domains and 8

banks. The 8 banks are divided into 3 bank groups, and each security domain

(S Di) can only access one of the bank groups in each turn. The schedule ensures

that consecutive memory requests always access different banks, hence the time

interval between them can be as short as 18 cycles using our DRAM timing

parameters.

However, the fixed scheduling of BTA leads to several inefficiencies. First, if

two requests from the same security domain access different banks in the same

bank group, the second request needs to wait for 24 (3*8) turns, or 432 cycles,

even though they only need to be separated by 18 cycles under timing con-

straints. Second, requests arriving at a “bad” time can be delayed significantly.
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For example, if a request for bank 0 from S D0 arrives at cycle 6, it must wait

for another 24 turns. Finally, BTA does not consider ranks when determining

the schedule. Requests to different ranks are still separated by 18 cycles even

though they only need to be separated by 6 cycles. Next, we show our new

memory controller design, SecMC-NI, that removes the inefficiencies in BTA.

4.3.2 SecMC-NI Algorithm

The inefficiencies in BTA come from the static nature of the scheduling

algorithm—only a fixed set of banks can be accessed in each turn. The design

principle of SecMC-NI is to allow a security domain to access any bank or rank

in its turn while improving the peak bandwidth through interleaving requests

to different banks and ranks. The scheme is inherently dynamic as memory re-

quests are scheduled based on each domain’s own access pattern rather than a

fixed schedule.

As in other temporal partitioning schemes, SecMC-NI divides time into

turns and use strict round-robin scheduling to schedule security domains. Only

one security domain can issue requests in each turn. For the convenience of

description, we define some parameters as follows:

Tturn: Turn length in clock cycles

S : Total number of security domains

Tbank: Minimum number of cycles between requests that access different banks

Trank: Minimum number of cycles between requests that access different ranks
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Request queue

Tbank = 18

B0 B1 B1 B0 B2 B3

B0 B1 B2Schedule

Tturn = 54

Figure 4.18: SecMC-NI scheduling example.

SD0 B0 B1 B2

B0 B1 B2Schedule

SD1 B2 B3 B0

B2 B3 B0

Tturn = 54

18 Timing Violation!

Figure 4.19: Bank conflict in SecMC-NI scheduling.

Request Selection Algorithm

In each turn, request selection algorithm picks requests from a security domain

to be issued. The requests are chosen based on the following rules. First, re-

quests must access different banks. This rule ensures that we can schedule the

chosen requests at a rate of one request every Tbank cycles. Second, the algorithm

enforces the maximum number of requests to be scheduled is bTturn/Tbankc. This

ensures that the picked requests can fit into one turn. Finally, the selected re-

quests are scheduled at cycle 0, Tbank, 2 · Tbank, ..., (bTturn/Tbankc − 1) · Tbank within

the turn.

As a concrete example, consider the schedule in Figure 4.18. The notation Bi

indicates a memory request for bank i. The requests are enqueued from the right

side of the queue and dequeued from the left side, as indicated by the arrows.

Let’s assume Tturn = 54 and Tbank = 18. Although there are two requests for bank

0 and bank 1, only one of the requests gets issued. Because at most 3 requests

can be issued in this turn, the request to bank 3 remains in the queue.
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Compare to BTA, the scheduling algorithm of SecMC-NI is more flexible. As

long as the requests are accessing different banks, they are allowed to be issued

together in a turn. However, this additional flexibility introduces new complex-

ities. Consider the example in Figure 4.19. Two different security domains are

ready to schedule their requests. If the requests are scheduled in their arrival or-

der, the resulting schedule will violate DRAM timing constraints due to a bank

conflict. To avoid such timing violations, SecMC-NI uses a reordering algorithm

to adjust the order of memory requests.

Reordering Algorithm

For reordering, SecMC-NI uses a small buffer to keep track of the schedule in

the previous turn. After the requests are selected for the current turn, SecMC-NI

checks each of these requests against requests in the previous turn. If Req0 in the

current turn accesses the same bank as Req1 in the previous turn, Req0 will be

placed at the same relative position as Req1. As a result, these two requests are

separated by Tturn cycles. To allow accesses to the same bank in two consecutive

turns, Tturn must be long enough (43 cycles) to satisfy DRAM timing for accesses

to the same bank. After the reordering, the history buffer is updated with the

schedule of the current turn. Using this reordering algorithm, the schedule of

S D1 in Figure 4.19 becomes B0, B3, B2, which satisfies DRAM timing constraints.

While reordering removes timing violations, it introduces a security concern

because the scheduling order of a security domain may be affected by the previ-

ous security domain. To avoid the information leak through reordering and en-

force strict non-interference, SecMC-NI delays sending memory responses back
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SD0
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Tturn = 54

Figure 4.20: Insecure scheduling example.

to CPU until all memory requests in a turn finish memory accesses. SecMC-NI

then sends the memory responses in the arrival order of memory requests.

Another subtle security issue is that the schedule in a turn must be deter-

mined at the beginning of a turn. If requests arrive in the middle of a security

domain’s turn, they cannot be scheduled in the current turn even if there are

available slots. To understand the problem, consider the example in Figure 4.20.

In the first case, S D0 has three requests scheduled in its turn. S D1 only has

one request to bank 2, which is scheduled at the last slot. During S D1’s turn, a

new request to bank 1 arrives for S D1. However, because the last slot is already

taken, B1 cannot be scheduled in this turn. In the second case, S D0 has no re-

quests. As a result, B2 from S D1 is scheduled in the first slot. When B1 arrives in

the middle of the turn, it can be scheduled in the last slot. This example shows

that S D0 can affect the timing of S D1’s requests, which is insecure. SecMC-NI

avoids this insecure scheduling by determining the schedule at the beginning

of a turn. B1 will not be scheduled in both cases.
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Figure 4.21: SecMC-NI scheduling with rank interleaving.

Interleaving Requests From Different Ranks

So far, we only considered which banks that memory requests access. However,

we can construct a far more efficient scheduling if we consider both the rank and

bank of a memory request. The basic idea is to construct a separate schedule for

each rank, and interleave these schedules to form the final schedule. The request

selection algorithm first picks the bTbank/Trankc ranks with the most pending re-

quests. For each chosen rank, the algorithm then picks the requests to different

banks as described earlier. Once all requests are selected, SecMC-NI interleaves

requests from different ranks to construct the final schedule. The ranks needs to

be reordered based on the previous turn’s schedule to avoid timing violations,

similar to the bank reordering described above.

As a concrete example, consider the example in Figure 4.21 with the follow-

ing timing parameters: Tturn = 54, Tbank = 18, Trank = 6. The requests are grouped

into separate queues based on which rank they access. SecMC-NI first picks

the ranks with the most pending requests. With these timing parameters, at

most three ranks can be interleaved. For domain 0, rank {0, 3, 2} are selected

to be issued in this turn. For each rank, requests to different banks are selected

as described earlier. Each rank constructs its scheduling pipeline separately,

112



and these scheduling pipelines are shifted and combined to construct the final

schedule as shown in Figure 4.21. The notation RiB j indicates a request that

accesses bank j in rank i. We separate each scheduling pipeline by Trank cycles

to avoid timing violations between requests to different ranks. For domain 1,

rank {2, 1, 3} are selected to be issued. To avoid timing violations between

security domains, SecMC-NI reorders the scheduling pipelines of a security do-

main so that each rank’s scheduling pipeline is in line with previous security

domain. For example, S D1’s ranks are scheduled in the order of {1, 3, 2} given

that S D0’s rank schedule is {0, 3, 2}. This ensures that the requests that access

the same bank and rank are separated by at least Tturn cycles. In the best case,

a security domain can issue 9 requests in a single turn using SecMC-NI, which

significantly improves the peak throughput.

Address Randomization

Although SecMC-NI has the same peak bandwidth as rank partitioning, it can

only do so if requests are evenly distributed across different ranks and banks.

If all requests access the same rank and bank, only one access can be issued

per turn. To improve the scheduling efficiency, address randomization is imple-

mented in SecMC-NI. The randomization maps a physical address to a random-

ized DRAM address by XORing a random bit vector so that requests are more

evenly distributed across ranks and banks.

113



Security

SecMC-NI completely removes timing channels among security domains be-

cause the memory latency of each security domain is independent of accesses

from other domains. The scheduling algorithm ensures that the same set of ac-

cesses are scheduled for each turn no matter which addresses are accessed by

other domains. The ordering within a turn is hidden by delaying responses

until all requests in a turn finish.

4.3.3 Peak Bandwidth Comparison

We compare the peak bandwidth utilization of SecMC-NI with that of existing

schemes under our DRAM timing parameters (Tbank = 18 and Trank = 6). The

worst case time between two requests that have a bank conflict is 43 cycles.

Hence, TP can issue one request every 43 cycles if the minimum turn length is

used, resulting in only 9% utilization (assuming a burst length of 4). For bank

partitioning (BP) and BTA, at most one request can be issued every 18 cycles,

resulting in a bandwidth utilization of 22%. Rank partitioning (RP) can issue

one request every 6 cycles, leading to 67% utilization. SecMC-NI’s bandwidth

utilization depends on the turn length. For Tturn = 43, at most 6 requests can be

issued in a turn, resulting in a utilization of 56%. For Tturn = 54, SecMC-NI can

issue 9 requests in a single turn in the ideal case, achieving the same bandwidth

utilization (67%) as rank partitioning. Tabel 4.3 summarizes the bandwidth uti-

lization of different schemes.
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Scheme TP BP BTA RP SecMC-NI
Bandwidth Utilization 9% 22% 22% 67% 67%

Table 4.3: Bandwidth utilization comparison between different schemes.
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Figure 4.22: Performance comparison between SecMC and BTA.

4.3.4 Evaluation

We integrated DRAMSim2 into ZSim to evaluate the performance of SecMC-NI.

We modeled a multi-core processor with 8 cores. Each core runs a benchmark

from a different security domain. The experimental setup is similar to that de-

scribed in Section 4.2.3.

Effect of Turn Length

We configure SecMC with two different turn lengths: 43 cycles and 54 cy-

cles. The 43-cycle turn allows up to 6 requests per turn (3 ranks, 2 banks per

rank). The 54-cycle turn allows up to 9 requests per turn (3 ranks, 3 banks per

rank). Figure 4.22 shows the performance comparison between the two turn

lengths. For programs with low memory intensity, BTA and SecMC perform

almost equally well, reaching 80% of the baseline’s performance. However,
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Figure 4.23: Queuing delay comparison between SecMC and BTA.

for memory-intensive programs, SecMC significantly outperforms BTA, almost

doubling the performance of BTA in many cases. This shows the advantages of

SecMC as it allows more flexible scheduling with a higher peak throughput by

interleaving requests to different ranks and banks.

To better understand the results, Figure 4.23 shows the average queueing

delay of memory requests under each scheme. The queueing delay is calculated

as the difference between the time that a memory request arrives at a request

queue and the time that the memory request gets issued to DRAM. Due to the

inflexible schedule, BTA incurs high queueing delays (∼600 cycles). SecMC-NI-

43 cuts this queueing delay by half on average.

Comparison between SecMC-NI-43 and SecMC-NI-54 leads to another inter-

esting observation. Although SecMC-NI-54 has a higher theoretical bandwidth

utilization than SecMC-NI-43, the longer turn length of SecMC-NI-54 increases

the average queueing delay of memory requests. Hence, we see SecMC-NI-43

actually outperforms SecMC-NI-54. For the rest of the evaluation section, we

use 43 cycles as the turn length for SecMC-NI.
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Figure 4.24: SecMC with and without address randomization.
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Figure 4.25: SecMem scheduling statistics.

Effect of Address Randomization

We then study the impact of address randomization on the performance of

SecMC-NI. The purpose of address randomization is to distribute memory re-

quests more evenly across different ranks and banks, thus helping SecMC-NI

to issue more requests in a turn. We compare the performance of SecMC-NI

with and without address randomization, as shown in Figure 4.24. On average,

adding address randomization only improves the performance of SecMC by 2%.

However, for some benchmarks such as hmmer, the improvement is significant.
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Figure 4.26: Performance comparison between SecMC and spatial parti-
tioning.

To understand why hmmer benefits significantly from address randomiza-

tion, we profiled the simulation without address randomization to record

scheduling statistics in each turn. Figure 4.25 shows three scheduling statis-

tics. num reqs represents the average number of requests in the queue for the

active security domain in each turn. num issued represents the average number

of requests that are issued in each turn. num same bank represents the average

number of requests that try to access the same bank of a rank. The value of

num same bank indicates the number of requests that cannot be scheduled to-

gether in a turn. As the figure shows, the value of num same bank is large for

hmmer, meaning that a lot of the requests in hmmer incur a bank conflict. With the

help of address randomization, hmmer’s requests are distributed more evenly

across different banks, which explains the huge performance gain for hmmer

when address randomization is enabled. For programs with many bank con-

flicts, address randomization is an effective way to improve the performance.
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Comparison with Spatial Partitioning

SecMC-NI outperforms the current state-of-the-art (BTA) that places no restric-

tion on memory allocation by 45% on average. Here, we compare SecMC-NI

with spatial partitioning schemes. Figure 4.26 shows the performance com-

parison between SecMC-NI, bank partitioning (BP), and rank partitioning (RP).

On average, SecMC-NI achieves similar performance as bank partitioning. For

some benchmarks (e.g. hmmer, lbm), SecMC-NI even outperforms bank parti-

tioning. This is mainly because SecMC-NI provides higher peak bandwidth;

the consecutive requests only need to be separated by 6 cycles in SecMC-NI,

while the minimum time interval between two requests in bank partitioning

is 18 cycles. However, the results also show a significant performance gap be-

tween SecMC-NI and rank partitioning, even though SecMC-NI has the same

theoretical bandwidth utilization as rank partitioning. This performance gap

results from two factors. First, the delay for a request to wait for its turn in

SecMC-NI is much longer than that of rank partitioning, as the minimum turn

length is 43 cycles. Second, SecMC-NI can reach the peak bandwidth only when

there are enough requests in a security domain that access different banks and

ranks to utilize all the scheduling slots. This condition is usually not met for

most benchmarks. Next, we propose a more efficient protection scheme called

“SecMC-Bound” as an attempt to close this performance gap.
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4.4 SecMC-Bound

4.4.1 Intuition and Overview

Schemes that completely remove timing interference such as TP and SecMC-NI

are inherently inefficient because they need to guarantee noninterference even

for the worst-case traffic. In particular, accesses from different secure domains

must be far enough apart (43 cycles) in case they access the same bank of a rank,

which requires a long turn length. Long turns lead to a significant queueing

delay. In practice, however, normal traffic patterns should only experience a

small number of bank conflicts.

In this section, we introduce a new scheme, named SecMC-Bound, which en-

ables a trade-off between security and performance with an theoretic bound on

information leakage. Allowing some timing interference enables the scheme to

use dynamic scheduling optimized for common-case behaviors. SecMC-Bound

hides common timing variations by delaying each response to a pre-determined

expected response time, which is independent of accesses from other security

domains. An access with significant interference may violate the expected re-

sponse time. The information leak through such timing variations is controlled

by delaying responses to the worst-case time of a completely secure scheme

(such as TP or SecMC-NI) after a limited number of violations over each period.
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Figure 4.27: Expected issue times for memory requests.

4.4.2 SecMC-Bound Algorithm

As in other secure memory controller designs, SecMC-Bound assumes that there

are per-domain input and output queues. Memory requests are stored in the in-

put queue of the corresponding security domain, and responses from DRAM are

stored in the output queue before being returned to the last-level cache (LLC).

Expected Times

Instead of relying on turn-based scheduling to remove timing interference be-

tween different security domains, SecMC-Bound assigns expected issue time to

each memory request when the request is enqueued at the memory controller.

The expected issue time (EI) for a request defines the clock cycle when this

request is expected to be issued to DRAM. Here, we introduce a parameter b,

which represents the time interval between EIs of two consecutive requests

from different security domains. Figure 4.27 shows an example of expected

issue times. The EI for the ith memory request from security domain s can be

calculated by Equation 4.4.
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Figure 4.28: Expected response times for memory requests.

tEI(s, i) = S · b · j + s · b (4.4)

where j is the minimum integer such that tEI(s, i) > tEI(s, i − 1) and tEI(s, i) >

enqueue time. S represents the total number of security domains as we defined

previously. Note that EI is only an estimate that is used for arbitration. In each

clock cycle, the DRAM scheduler selects the request 1) with the lowest EI 2)

among ones that can be issued (satisfying all DRAM timing requirements). The

actual issue time of a request does not need to match its EI. For example, if

there exist lots of bank conflicts, requests are likely to be issued later than their

EIs because of high memory interference.

To hide the memory interference from potential attackers, we delay each

memory response to return at certain clock cycles. The return time for a mem-

ory request is called expected response time (ER), which defines the clock cycle

when this request will be returned to the CPU. We introduce another timing

parameter d, which is defined as the difference between a request’s EI and its

ER. Figure 4.28 shows an example of expected response time for a request from

S D1. The function of d is to hide the interference between different security do-

mains. Although requests from different security domains can delay each other

in memory scheduling, this interference cannot be observed by an attacker as
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long as every request is returned exactly at its ER, since the ER of a request

from one security domain is independent of other security domains. Given the

parameter d, ER can be trivially calculated with Equation 4.5.

tER(s, i) = tEI(s, i) + d (4.5)

ER Violation

When a request is completed, the corresponding response is put into a per-

domain output queue. To hide timing variations in the DRAM scheduling,

SecMC-Bound delays each response until its ER. The built-in delay (d) in ER

hides small timing interference.

However, there is no guarantee that every request can finish before its ER

and be returned at exactly ER. If the interference between memory requests is

very intense, or d is set too small, it is likely that some requests cannot finish

before their ERs. If a request is returned after its ER, we count it as an ER vi-

olation. ER violations represent information leakage as they allow an attacker

to observe timing variations caused by memory interference. If a request is

allowed to be returned at any clock cycle after its ER, an attacker is able to ob-

serve the exact delay value, hence extracting significant amount of information

from one ER violation. To limit the amount of information that one ER viola-

tion leaks, we restrict a request to return only at predetermined delay values,

i.e., di (1 ≤ i ≤ W − 1). We also specify a worst-case delay value, dW , in a way

that a request is guaranteed to finish before ER+dW , or worst-case response time
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Figure 4.29: Predetermined delay values.

(WR). We will describe how to calculate the worst-case response time in the next

section.

Figure 4.29 shows the predetermined delay values for a request. If a request

finishes at cycle t f inish, it will be returned at cycle ER+d j, where j is the minimum

integer such that ER + d j > t f inish. Under this scheme, a request that violates ER

can only have W possible delays, which limits the amount of information that

an attacker can extract from one ER violation.

SecMC-Bound increments a counter (m) to record the number of ER viola-

tions. Both EI and ER of the request are also incremented by dk to account for

the visible delay. The following memory request uses this updated EI as the

previous request’s EI in the constraint (tEI(s, i) > tEI(s, i− 1)) when calculating its

EI.

Worst-Case Times

This section describes how to calculate the worst-case times. The worst-case

time represents the timing that the controller can guarantee a request to fin-

ish for any traffic pattern. The worst-case time is determined using a secure

scheduling algorithm such as TP or SecMC-NI.
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Figure 4.30: TP used as the worst-case scheduling algorithm.

As an example, consider using TP with the minimum turn length (Tturn =

43) as the worst-case scheduling algorithm. Under this TP scheme, one request

can be issued every 43 cycles, and security domains take turns to issue their

requests. Figure 4.30 shows an example TP schedule. With TP being used as the

worst-case scheduling, the worst-case issue time (WI) for the ith request from

security domain s can be calculated by Equation 4.6.

tWI(s, i) = S · Tturn · j + s · Tturn + o f f setre f resh (4.6)

where j is the minimum integer such that tWI(s, i) is greater than tenq(s, i)+Tturn

and tEI(s, i− 1) + S · Tturn. Here, tenq(s, i) is the enqueue time, Tturn is the minimum

turn length (43) and o f f setre f resh represents the delay due to DRAM refresh cy-

cles. Note that the EI of the previous request (tEI(s, i− 1)) in the constraint incor-

porates delays due to ER violations and represents time after the actual issue-

time. Therefore, the WI of a request is defined to be at least S · Tturn cycles away

from the previous request’s actual issue-time and at least Tturn cycles away from

the time that the request is enqueued.

The above construction provides an enough margin for a memory controller

to enforce the worst-case time for any traffic patterns. If there is a request whose

WI is less than Tturn cycles away, our DRAM scheduler enforces a dead time so
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that no new requests can be issued and all in-flight transactions will be drained.

This guarantees that the request can be issued by its WI. Effectively, the schedul-

ing follows TP for one turn. This scheduler design ensures that every request

is issued before its WI. In turn, the worst-case response-time (WR) can be com-

puted using a DRAM access latency:

tWR(s, i) = tWI(s, i) + tRCD + tCAS + tBURS T (4.7)

Limiting the Number of ER Violations

SecMC-Bound enables a trade-off between performance and the number of ER

violations through the parameters b, d, and W. Larger b or d will reduce the

number of ER violations, but at the cost of increased memory latencies.

The number of ER violations directly correlates with the amount of leaked

information. In order to bound the information leakage, SecMC-Bound lim-

its the number of ER violations that can happen in a certain time interval. To

enforce the limit, SecMC-Bound maintains counters for the number of ER viola-

tions (m) and the number of read requests (n) for each security domain. SecMC-

Bound can be configured to only allow up to M ER violations over a period (N

read requests or C cycles).

If m reaches the limit M for one security domain, SecMC-Bound switches to

the conservative worst-case mode for that security domain and delays every re-

sponse until its WR. As a result, there cannot be any more ER violations for that

security domain. Note that this restriction does not change the DRAM schedul-
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ing or accesses from other security domains. Once a period is over, the counters

are reset and the output queue again uses ERs to delay responses.

Handling Conflicts of Response Time

If no ER violation happens, the ERs of any two requests are always different,

i.e., at most one response needs to be returned to the CPU at any cycle. This

property is guaranteed by equation 4.5. For two requests in the same security

domain, the request that arrives later always has a higher ER. For two requests

from distinct security domains, the different security domain IDs guarantee that

their ERs always differ by a multiple of b cycles.

However, if ER violations do happen, it is possible that two requests from

different security domains are assigned the same ER because they use different

delay values (di where 1 ≤ i ≤ W). Since a memory controller can only return one

memory response to the CPU in each clock cycle, one of these responses have to

be delayed—a possible timing channel. To avoid the conflicts of response time,

we apply time multiplexing to the memory controller’s response queue. As-

sume a request from security domain s finishes and the corresponding response

is stored in the response queue. Instead of returning this response at tER, we

further delay this response to cycle t′ER, which satisfies:

0 ≤ t′ER − tER < S & t′ER mod S == s (4.8)

t′ER calculates the next available time slot for security domain s to return

its response given a strict round-robin schedule. The extra delay does not

leak information because it comes from a static schedule. Although this so-

127



lution means some responses will be delayed, the number of delayed cycles is

bounded by the number of security domains (S ). The performance overhead of

this tiny delay is almost negligible.

4.4.3 Performance Optimizations

Avoiding Worst-Case Times

When the number of ER violations m reaches the limit M, SecMC-Bound

switches to the worst-case mode, which incurs significant performance over-

head to that security domain. To reduce the chance of entering the worst-case

mode, we can gradually increase the value of d as the number of violations in-

creases. As an example, assume that the limit (M) is 3 violations over 1 million

requests. We set the initial value of d to be dinit and adjust the value of d based

on the number of ER violations (m) for a security domain.

• If m = 0, d = dinit.

• If m = 1, d = dinit + delay1.

• If m = 2, d = dinit + delay2.

• If m = 3, d = dinit + dW .

Because d increases with m, an ER violation is less likely to happen when m is

large. As a result, SecMC-Bound is unlikely to enter the worst-case mode. After

a period, the counter m is reset to 0 and d is reset to dinit. The optimization can be

applied to any value of M by defining d for each possible value of m. Note that
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a similar optimization can be applied to b to also reduce the chance of entering

the worst-case mode.

Dynamic Tuning of dinit and binit Value

SecMC-Bound uses two design parameters d and b to determine expected re-

sponse times. Intuitively, these two parameters represent different points in

the security-performance trade-off space, and we may be able to improve per-

formance with minimal impact on security if we can properly choose d and b

depending on application characteristics. For example, applications with infre-

quent memory accesses may not experience any ER violation even with a small

d, which results in a shorter memory latency.

The optimization in Section 4.4.3 adjusts the value of d within each period,

but the initial value of d (dinit) is still fixed. Here, we discuss how the value of

dinit can be dynamically adjusted.

In this scheme, we adjust dinit at the end of each period based on the number

of ER violations (m) observed in that period. The updated dinit is used in the

following period.

• If m = 0, dinit = dinit - 10.

• If m ≥ M − 1, dinit = dinit + 10.

• Otherwise, dinit = dinit.

The above algorithm decreases dinit if there was no ER violation in the pre-

vious period (m = 0), and increases dinit if the number of ER violations almost
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reached the limit (m ≥ M − 1). The algorithm can be adjusted with different

thresholds to change dinit more aggressively. For example, a more aggressive

scheme may decrease dinit when m < M − 1. This design can decrease dinit to a

lower value, but is also likely to result in more ER violations. In our experi-

ments, we used the shown algorithm, which more conservatively change dinit.

The same approach can be applied to dynamically adjust the initial value of

b (binit). Dynamic tuning of dinit and binit has two benefits. First, the dynamic tun-

ing allows the scheme to adapt to different phases of an application. Memory-

intensive phases may require large dinit and binit to reduce the number of ER

violations, while less memory-intensive phases can use smaller dinit and binit to

improve the performance. Second, the dynamic tuning allows adapting to dif-

ferent workloads without manual designer efforts. The scheme will automat-

ically adjust itself to meet the specified limit on the ER violations for a given

workload.

Combining with Spatial Partitioning

We observe that SecMC-Bound is orthogonal to spatial partitioning techniques

such as rank/bank partitioning. In fact, combining SecMC-Bound with spatial

partitioning can yield higher performance than simply using spatial partition-

ing. In rank/bank partitioning, the requests are scheduled in a static round-

robin fashion. Even if a security domain is not memory-intensive and generates

few memory requests, its scheduling time slots are reserved and cannot be uti-

lized by other memory-intensive security domains. In contrast, SecMC-Bound

allows dynamic scheduling among security domains and hides the timing vari-

ations by delaying memory responses. Hence, memory-intensive programs
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could get higher bandwidth when other programs are not using the memory.

In a mixed scheme, the memory controller can start with SecMC-Bound. When

a security domain reaches the limit on number of violations, the mixed scheme

can switch to the spatial partitioning schemes for complete security. As long

as SecMC-Bound provides better performance than spatial partitioning before

the switch happens, the overall system performance still beats that of applying

spatial partitioning alone.

4.4.4 Information Theoretic Bound

SecMC-Bound is designed so that the response time of each memory request

only depends on requests within its security domain, except for ER violations.

The added delay on an ER violation is the only property that depends, partially,

on memory requests from other security domains, leading to potential timing

channels. Here, we present an information theoretic analysis that enables us to

conservatively compute a quantitative upper bound on the rate of information

leakage based on the number of ER violations.

We start by making the following definitions. Let x be the history of all

memory requests, from all security domains, from time −∞ to the present. Let Y

be the vector of delays (y1, y2, ...yn) seen by a receiver program that places n read

requests such that yi ∈ {0, d1, ...dW−1, dW} ∀i s.t. 0 < d1 < ...dW . Note that any yi > 0

is considered an ER violation.

In the context of a covert channel between malicious programs, channel ca-

pacity is the most natural information theoretic metric. It can be computed as:

C = maxx I(X; Y) = maxx {H(Y) − H(Y|X)}, using the usual information theoretic
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definition of entropy. Because Y is deterministic given X for a memory con-

troller, I(X; Y) = H(Y). In general, mathematically analyzing the precise distri-

bution of Y is non-trivial. To simplify the analysis, we conservatively assume

that all probability distributions over the possible values of Y are attainable. In

this case, the entropy of Y is maximized when the distribution is uniform over

all y ∈ Y and the channel capacity can be simply computed with the number of

possible y ∈ Y.

Given that SecMC-Bound limits the ER violations to be at most M out of N

requests, the number of possible values of Y can be computed using a basic

combinational analysis. The leakage is simply the logarithm of this value:

max
X

I(X; Y) = log2(
M∑

m=0

Wm

(
N
m

)
). (4.9)

In the context of an unintentional side channel where a malicious listener

snoops on the activity of other programs, maximum leakage, which can be com-

puted as L(X → Y) ≡ log2(
∑

y maxp(x)>0 p(y|x)), is a popular metric for the rate of

information leakage. In our case where Y is deterministic in X, maximum leak-

age also reduces to the logarithm of the number of possible values of Y. Hence,

the bound for maximum leakage is the same as the bound for covert channel

capacity.

Practical Channel Capacity. The above bound is calculated under conservative

assumptions, which are not true in practical systems. The bound assumes that

all conceivable Y distributions are possible and that a malicious program can

choose any of these distributions at will. However, in practice, memory accesses

are much more likely to result in no ER violation or a low delay even on an ER

violation. The bound also captures the information leak from all programs to
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a receiver even though attackers in practice only control a subset of programs

and other accesses add uncontrolled noise. The bound also assumes that an

attacker can control and measure all memory accesses at a cycle granularity.

This is unlikely in practice. For example, caches affect memory requests and it

is difficult to maintain perfect synchronization between concurrent programs.

In that sense, we provide a conservative bound for channel capacity. The

practically achievable channel capacity is likely be at least two to three orders

of magnitude lower than our information theoretic bound under ideal assump-

tions. For example, a previous study [HKR+15] showed the covert-channel ca-

pacity around 500 Kbps based on memory contention even when every memory

access could be used to leak information in theory. Fortunately, our experimen-

tal results show that even our conservative bound can be used to provide good

performance with a guarantee on low information leakage. We leave the further

refining the bound considering practical limitations as future work.

4.4.5 Evaluation

We study the performance of SecMC-Bound under different security guaran-

tees. The experimental setup is the same as SecMC-NI. In these experiments,

we also used a more diverse workloads that consist of different SPEC bench-

marks. We randomly constructed 20 such workloads. We only show the results

for representative 10 workloads in figures, but found that all 20 workloads show

similar trend. The 10 workloads we used are shown in Table 4.4.
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mix-1 ton les gam gro gam h264 mcf bwa
mix-2 gcc cac h264 zeu gam cac gam ton
mix-3 sje per zeu gam les les gcc gcc
mix-4 xal gro gcc bzi dea gob ton hmm
mix-5 nam zeu gam per omn gcc ton zeu
mix-6 per xal cac dea gob les cac gob
mix-7 per gcc cac mcf zeu per omn lib
mix-8 sop gam mil gro hmm sje les lib
mix-9 ton xal omn gcc ton h264 h264 hmm

mix-10 zeu hmm lbm les mcf mcf mcf bwa
Table 4.4: Mixed workloads.

Parameter Sweep for b and d

To explore the design space, we tried different values for the design parameters,

b and d. We used {3, 6, 18} for b and {64, 128, 256} for d. Note that in these

experiments, we do not restrict the number of violations over a period. For

these experiments, we used W = 3 with d1 = 30, d2 = 160 and d3 to be the

worst-case delay. The performance was normalized to the insecure baseline.

Figure 4.31 shows the performance of SecMC-Bound across different param-

eter values. We use the notation SecMC-Bound-b-d to represent the scheme with

different b and d. For a fixed b, the performance of SecMC-Bound decreases as d

increases because a smaller d leads to an earlier expected response-time (ER). A

large d increases the memory latency. For a fixed d, the performance decreases

as b increases. This is because b affects the expected issue-time (EI), hence also

indirectly affecting the expected response-time (ER). A larger b leads to a later

expected response-time.

In summary, small b and d improve the performance of SecMC-Bound.

For example, SecMC-Bound-3-64 achieves nearly 90% of the baseline’s perfor-

mance, which even beats rank partitioning. However, the high performance of
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Figure 4.31: Performance with different value of b and d.
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Figure 4.32: Number of violations with different value of b and d.

136



SecMC-Bound-3-64 comes with a lower security level. To see how the security

is affected, we plot the average response time violations per memory request in

Figure 4.32. Note that the y-axis uses a log scale. As the figure shows, small

b and d leads to more frequent violations, which indicates more potential in-

formation leak. Fortunately, the number of response time violations decreases

exponentially as we increase d. Even though a large d leads to lower perfor-

mance, SecMC-Bound-6-256 still achieves 60% of the baseline’s performance,

which is better than SecMC-NI and BTA.

Figure 4.31 and 4.32 show that SecMC-Bound provides a large trade-off

space between performance and security. Users can tune the performance of

their memory controller based on how much security they are willing to sacri-

fice.

Limiting the Response Time Violations

We study the performance of SecMC-Bound when we apply the mechanism

to enforce the number of violations in a period. Figure 4.33 shows the perfor-

mance results for two sets of workloads with b = 6 and d = 160. We use four

different limit values. “4 in 1,000” means we allow 4 violations in every 1,000

requests. Once the number of violations for a security domain reaches the limit

in a period, this security domain enters the worst-case mode, in which it always

uses the worst-case response time derived from TP. As can be seen from the

results, enforcing a limit on the number of violations introduces some perfor-

mance overhead to SecMC-Bound. As the limit gets lower, a security domain is

more likely to enter worst-case mode, which lowers its performance.
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Figure 4.33: Performance with limit on violations.

Yet, enforcing a limit on the number of violations is necessary to provide

a bound on the information leak. Figure 4.34 shows the leakage rate for each

of the limit. As we lower the limit, the leakage bound drops accordingly. A

designer may choose the limit based on the assets he or she wants to protect. For

example, if the asset is a large file such as an HD movie, even leaking hundreds

of bits per second may be acceptable. On the other hand, if the scheme needs

to protect a small secret such as a cryptographic key, the limit will need to be

much lower.
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Figure 4.34: Leakage rate with limit on violations.

Optimization 1: Avoiding Worst-Case Times

The high performance overhead for the low limit in Figure 4.33 is mainly caused

by the worst-case mode where all responses are delayed to their WR. One of the

proposed optimizations reduces the chance of reaching the ER violation limit

and entering the worst-case mode by gradually increasing the value of d. To see

the effectiveness of this optimization, we ran experiments with this optimiza-

tion implemented—the value of d increases by 10 whenever an ER violation

happens within each period. Figure 4.35 shows the performance results for the
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Figure 4.35: Performance after optimization.

single-benchmark workload with this optimization. Compared to the results

without the optimization shown in Figure 4.33, the performance drastically in-

creases for the low ER violation limit (4 in 1,000,000). The result suggests that

this optimization is effective in preventing a security domain from frequently

entering the worst-case mode when the limit is low. However, the performance

is slightly degraded for cases with a high limit. Security domains do not of-

ten reach the ER violation limit in these cases, hence increasing the value of d

actually increases the average memory latency. The results suggest that the op-

timization should be used when a security domain is likely to reach the limit on

ER violations in a period.

Optimization 2: Dynamic Tuning of dinit Value

We study the performance impact of dynamically tuning the dinit value based

on the number of ER violations in the previous period. In this experiment, the

initial value of d (dinit) is set to 160 and b is set to 6. Figure 4.36 shows the per-

formance with this optimization under different ER violation limits. When the

140



Gem
sF

DTD

h2
64

ref
ton

to
na

md

go
bm

k

om
ne

tpp

hm
mer

ca
ctu

sA
DM

bw
av

es

lib
qu

an
tum lbm mcf

GEOMEAN

Workload

0

20

40

60

80

100

N
or

m
al

iz
ed

 W
ei

gh
te

d 
S

pe
ed

up
 (%

)

Static
4 in 1,000

4 in 10,000
4 in 100,000

4 in 1,000,000

Figure 4.36: Performance by tuning d0 value.

limit is high (4 in 1,000), we see a noticeable performance improvement over the

static case with a fixed dinit. This is because the optimization drastically reduces

the value of dinit (e.g., from 160 to 72) while the static case uses a fixed dinit value

(160). However, when the limit becomes lower, the performance improvement

gradually drops down to zero. For a lower limit with a longer period, m over a

period is more likely to be non-zero and dinit often cannot be reduced.

Optimization 3: Combining with Spatial Partitioning

We study the performance of SecMC-Bound when combined with spatial par-

titioning techniques. In this experiment, we use b = 3 and d = 24 (tRCD + tCAS +

tBURS T ). We choose small b and d values because spatial partitioning should al-

leviate the interference between security domains, thus requests can be issued

and returned faster. We do not enforce a limit on the number of violations so

that we can see the best possible performance of the mixed scheme. The per-

formance results for the mixed workloads are shown in Figure 4.37. Combining

SecMC-Bound with spatial partitioning significantly outperforms using spatial
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Figure 4.37: Combining SecMC-Bound with spatial partitioning.

partitioning alone. However, the combined schemes do incur timing violations

on some requests. If we apply the enforcement mechanism to limit the number

of violations in each period, it is likely that we will see some performance loss

in the mixed scheme. Nevertheless, since the mixed scheme switches to RP/BP

after the violation limit is reached, the overall performance of the mixed scheme

will still beat that of RP/BP.

Comparison with Previous Schemes

Figure 4.38 shows the performance comparison between SecMC-Bound and

other secure memory controller schemes. In this experiment, we use b = 6

and d = 160 to represent the performance of SecMC-Bound. The performance

of SecMC-NI is significantly higher than BTA and close to BP. SecMC-Bound

achieves 70% of the insecure baseline performance, outperforming BTA, SecMC-

NI and even BP. The performance benefit shows that SecMC-Bound allows more

flexible memory scheduling than completely secure schemes while providing a

theoretic bound on information leakage.
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Figure 4.38: Performance comparison of different schemes.

Summary

Figure 4.39 shows the summary of the secure memory controller design space

using the performance for the mixed workloads. SecMC schemes do not require

spatial partitioning and outperform BTA, which represent the best previous

scheme without spatial partitioning. SecMC-NI achieves similar performance

as bank partitioning. SecMC-Bound’s performance spans from 56% to 87% of

the baseline, depending on the values chosen for b and d, enabling a trade-off
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Figure 4.39: Design space summary (mixed workloads).

between performance and security with a bounded information leakage. While

not shown here, we found that SecMC-Bound can also be combined with spatial

partitioning to further improve their performance.
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CHAPTER 5

RTL VERIFICATION

In the previous chapters, we propose several timing channel protection

schemes for hardware components in a multi-core processor. While we be-

lieve our protection schemes are secure, an actual hardware implementation

may be insecure either because there is a flaw in a protection scheme or be-

cause a hardware designer implements a secure scheme incorrectly. Therefore,

it is important to verify the actual hardware design is secure in a low level

abstraction—RTL (Register Transfer Level). In this chapter, we use a tool called

SecVerilog [ZWSM15] to verify secure processors in RTL at compile time. Sec-

tion 5.1 introduces some background knowledge about SecVerilog. Section 5.2

and Section 5.3 describe our experience of designing a single-core MIPS proces-

sor and a multi-core PARC-tiny processor using SecVerilog.

5.1 Background: SecVerilog

SecVerilog is a new hardware description language (HDL) that adds a security

type system to Verilog so that hardware-level information flows can be checked

statically. SecVerilog compiler is implemented based on Icarus Verilog [ive].

It extends Verilog with the ability to give each signal a label that specifies the

security level of the signal. SecVerilog then verifies that the information flows

between signals conform to a specified security policy using the security labels.

All forms of information flow are tracked, including implicit flows and timing

channels.
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1 reg [ 1 8 : 0 ] tag0 [ 2 5 6 ] , tag1 [ 2 5 6 ] ;
2 reg [ 1 8 : 0 ] tag2 [ 2 5 6 ] , tag3 [ 2 5 6 ] ;
3 wire [ 7 : 0 ] index ;
4 wire [ 1 : 0 ] way ;
5 wire [ 1 8 : 0 ] t a g i n ;
6 wire wr i t e en ab le ;
7
8 always @( posedge c lock ) begin
9 i f ( wr i t e en ab le ) begin

10 case (way)
11 0 : begin tag0 [ index ]= t a g i n ; end
12 1 : begin tag1 [ index ]= t a g i n ; end
13 2 : begin tag2 [ index ]= t a g i n ; end
14 3 : begin tag3 [ index ]= t a g i n ; end
15 endcase
16 end
17 end

Figure 5.1: A simple Verilog code example.

5.1.1 SecVerilog Examples

To see how SecVerilog works, consider a simple Verilog code example that up-

dates the tags of a 4-way cache, as shown in Figure 5.1.

We use this code to design a secure partitioned cache described in Sec-

tion 3.6.5, in which way 0 and 1 (tag0 and tag1) are used as the L partition,

and way 2 and 3 (tag2 and tag3) are used as the H partition. The code writes a

new cache tag to a way specified by way when write enable is asserted.

The secure partitioned cache has several requirements on how the cache can

be used. First, tag in must not contain confidential information when way is 0

or 1, to prevent the H partition from affecting the state of L partition. Second,

write enable, which controls whether a write occurs, cannot be influenced by
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1 reg [ 1 8 : 0 ] {L} tag0 [ 2 5 6 ] , tag1 [ 2 5 6 ] ;
2 reg [ 1 8 : 0 ] {H} tag2 [ 2 5 6 ] , tag3 [ 2 5 6 ] ;
3 wire [ 7 : 0 ] {L} index ;
4 //Par ( 0 ) = Par ( 1 ) =L Par ( 2 ) = Par ( 3 ) =H
5 wire [ 1 : 0 ] {Par (way)} way ;
6 wire [ 1 8 : 0 ] {Par (way)} t a g i n ;
7 wire {Par (way)} w ri t e en ab le ;
8
9 always @( posedge c lock ) begin

10 i f ( wr i t e en ab le ) begin
11 case (way)
12 0 : begin tag0 [ index ]= t a g i n ; end
13 1 : begin tag1 [ index ]= t a g i n ; end
14 2 : begin tag2 [ index ]= t a g i n ; end
15 3 : begin tag3 [ index ]= t a g i n ; end
16 endcase
17 end
18 end

Figure 5.2: Labeled code example.

confidential information when way is 0 or 1. Verifying these restrictions is tricky

since signals such as tag in and write enable are shared by L and H partitions.

SecVerilog solves this problem by giving each signal a security label and ver-

ifying information flows are legal according to a security policy. In this example,

the security policy is that information is not allowed to flow from H to L. Using

the same example, the labeled code is shown in Figure 5.2.

The functionality of this Verilog code example does not change. The only

modification is the added security labels to each signal declaration. For exam-

ple, cache way 0 and 1 are labeled as L to indicate they are the L partition. With

the security labels, SecVerilog is able to check every assignment statement in

the code and report any illegal statement. For example, if a signal with H label

is assigned to another signal with L label, it will be considered as an illegal as-
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1 wire {L} in1 ;
2 wire {H} in2 ;
3 wire {L} s e l ;
4 reg {L} out ;
5
6 always @( * ) begin
7 i f ( s e l == 1 ’ b0 )
8 out = in1 ;
9 e l s e

10 out = in2 ;
11 end

Figure 5.3: An insecure two-input mux.

signment because it violates the security policy that the information flow from

H to L is disallowed. However, in the code example above, the signal tag in can

be assigned to any cache way based on the value of way, it will be insecure to

assign either H or L to tag in.

A novel feature of SecVerilog is the support of dependent types, which al-

lows a signal’s security label to change based on the value of another signal. In

the code example above, the label function Par(way) utilizes this feature. Par

denotes a type-level function that maps 0 and 1 to L, and 2 and 3 to H. When

way is 0 or 1, the security label of tag in becomes L. Since tag in is being assigned

to tag0 or tag1, which also has a L label, the assignment is legal. Same applies to

the case when way is 2 or 3.

As another example, consider an insecure mux design shown in Figure 5.3.

The security label of the mux output is L, while one of the input signals has a H

label. When checking this code, SecVerilog reports the assignment at line 10 as

illegal, because the assignment directly passes the value from a H signal to a L
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1 reg [ 7 : 0 ] {H} s e c r e t ;
2 reg [ 7 : 0 ] {L} public , x ;
3 reg [ 7 : 0 ] {LH( x )} y ; // LH(0 )=L LH(1 )=H
4 always@( posedge c lock ) begin
5 if ( x==1) begin
6 y <= s e c r e t ;
7 else begin
8 publ ic <= y ;
9 end

10 end

Figure 5.4: An example of implicit declassification.

signal. With this automatic information flow tracking in SecVerilog, hardware

designers can easily identify and fix security vulnerabilities in RTL design.

5.1.2 Implicit Declassification

Whenever the value of a variable changes, the meaning of any security label

that depends on it also changes. To be secure, SecVerilog needs to prevent such

changes from implicitly declassifying information. Consider the example in Fig-

ure 5.4. This code is clearly insecure since it copies secret into public when x

changes from 1 to 0.

At the assignment to y in the first branch, y’s level is H because x is 1. But at

the assignment to public, the level of y is L because x is 0. The insecurity arises

from the change to the label of y during the execution, while its content remains

the same. In other words, if x changes from 1 to 0, the label of y cannot protect

its content.
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SecVerilog relies on a dynamic mechanism to erase register contents when

the security level of a register changes and information is not allowed to flow

from the old level to the new level. Code to dynamically zero out registers is

automatically inserted as part of the translation to Verilog.

While this dynamic mechanism may affect the functionality of the original

hardware design, it may not be a major issue in practice. In the design of a

secure MIPS processor (see Section 5.2), registers that have dependent security

labels need to be cleared when the security label changes from H to L. However,

this clearing is rare and indeed necessary for security. In fact, the new value of

the register need not to be zero—any constant value suffices. Hardware design-

ers can explicitly specify the new value of a register when the clearing happens

so that the functionality of the hardware is not affected. Although automatically

inserting the right constant values is not currently supported in SecVerilog, the

type checker can notify a designer when automatic clearing is generated to help

the designer specify the clearing values.

5.2 A Single-Core MIPS Processor

We used SecVerilog to design and verify a secure MIPS processor. We sketch

the processor design, and show how SecVerilog helps avoid security vulner-

abilities. We then provide results on the overhead of timing channel protec-

tion. Overall, we found that the capability to statically control information flow

at a fine granularity (by labeling the software with language-based protection

framework [ZAM12]) enables efficient secure hardware designs.
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Module Name LOC
Fetch 60

Decode + Register File 465
Execute + ALU 218

FPU N/A
Memory + Cache 537

Write Back 20
Control Logic + Forwarding + Stalling 419

Total w/o FPU 1719

Table 5.1: Lines of Code (LOC) for each processor component.

5.2.1 Processor Design

We designed a complete MIPS processor that enforces the software label con-

tract discussed in Section 3.6.2. Specifically, we implement the DirtyCache de-

sign (see Section 3.6.5), which marks every cache line dirty for security. Our

processor is based on a classic 5-stage in-order pipeline with separate instruc-

tion and data caches, both of which are 32kB and 4-way associative. Our pro-

cessor also includes a floating point unit (FPU) that we constructed using the

Synopsys DesignWare library.

The Verilog code for our processor has more than 1700 LOC excluding the

FPU, as shown in Table 5.1. LOC for the FPU is not reported because the source

code for the DesignWare library component is not available. Table 5.2 sum-

marizes the processor’s ISA, which is rich enough that we can compile a re-

cent OpenSSL release with an off-the-shelf gcc compiler. The ISA is at least

comparable to the ISAs of prior processors with formally verified security (e.g.,

[LKO+14]). New instructions “setr” and “setw” are used to set security labels.

Our secure processor design supports fine-grained sharing of hardware re-

sources between different security levels. For example, the design allows both
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Instruction type Instructions
Additive Arithmetic add, addi, addiu, addu, sub, subu

Binary Arithmetic and, or, xor, nor, srl, sra, sll, sllv
srlv, srav, slt, sltu, slti, sltiu, andi, ori, xori

Multiply/divide mult, multu, div, divu
Floating point add.s, sub.s, mul.s, div.s, neg.s, abs.s

mov.s, cvt.s.w, cvt.w.s, c.lt.s, c.le.s
Branch and jump bne, beq, blez, bgtz, jr, jalr, j, jal

Memory operation lw, lhu, lh, lbu, lb, sw, sh, sb, swc1, lwc1
Others mfhi, mflo, lui, mtc1, mfc1

syscall, break
Security-related setr, setw

Table 5.2: Complete ISA of our MIPS processor.

high and low cache partitions to be securely used by a single program, while a

coarse-grained approach may only allow a program to use either the high par-

tition or the low partition.

To implement such a rich policy, we divide a 4-way cache into a low parti-

tion and a high partition. When the security label of an instruction is H, both

low and high partitions can be used securely. When the security label of an

instruction is L, both low and high partitions are still searched. However, to en-

sure that timing can be affected only by the low cache partition, a cache access

is treated as a miss even when there is a hit in the high partition. To avoid data

duplication, the cache line moves from the high partition to the low partition

when the data arrives from memory, achieving functional correctness without

violating the timing constraint.

The pipeline, on the other hand, is dynamically partitioned using the se-

curity label of an instruction. When the security label changes, the pipeline is

drained to avoid leaking information. A pipeline that interleaves instructions of
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different security labels without flushing is indeed insecure, since the instruc-

tions with higher security labels may stall the ones with lower security labels.

I found that implementing such a complex policy securely would be difficult

without using SecVerilog. For example, the SecVerilog type checker caught a

security flaw not foreseen by me: the dirty bit copied from the high partition to

the low partition created a potential timing channel. This was the motivation

for me to develop the DirtyCache design (see Section 3.6.5).

Another security issue caught by the SecVerilog type checker is a stall at

the instruction fetch stage can affect the memory stage. In our pipeline imple-

mentation, a load miss in an instruction could stall instructions in later pipeline

stages because instruction cache and data cache could not be accessed simul-

taneously. Thus, when the security label changes, an instruction with security

label H in the fetch stage can stall another instruction with label L in the mem-

ory stage, breaking the security label contract. To make the design type-check,

the pipeline is drained when the new instruction has a different security label

from instructions that are already in the pipeline.

5.2.2 Overhead of Timing Channel Protection

The timing channel protection mechanisms in the processor adds some over-

heads compared to the unmodified baseline that has no protection because of

some restrictions on how the cache can be used. In this section, we evaluate the

overhead of our secure processor design.
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Baseline Secure
Delay w/ FPU (ns) 4.20 4.20

Delay w/o FPU (ns) 1.64 1.66
Area (µm2) 399400 402079

Power (mw) 575.5 575.6

Table 5.3: Comparing processor designs.

Delay, Area and Power

We synthesized the processor designs with the Synopsys synthesis flow, using

the 90nm saed90nm max digital standard cell library. For both designs, we in-

creased the frequency of the processors to the maximum achievable to see what

overhead the secure design adds to the critical path. The synthesis results are

shown in Table 5.3. When an FPU is included, we found that the critical path

delays are identical for both our secure design and the baseline, as shown in Ta-

ble 5.3. This is because the critical path of the processor lies in the FPU, which is

largely unmodified. To more meaningfully evaluate the impact of secure design,

we also measured the maximum achievable frequency without an FPU. Never-

theless, the delay overhead is still only 1.22%. The area overhead of 0.67% was

also quite low, and power overhead is almost negligible. Because SecVerilog

allows hardware resources to be shared across security levels while properly

restricting their allocations, timing channel protection mostly does not require

duplicating or adding hardware.

Performance

Our benchmarks include three security programs (blowfish, rijndael, SHA-

1) from MiBench, a popular embedded benchmark suite for architectural de-
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signs1 [GRE+01], as well as ciphers and hash functions in a recent release (ver-

sion 1.0.1g) of OpenSSL, a widely used open-source SSL library.

Thanks to the rich ISA of our MIPS processor, compiling and running these

benchmarks require only modest effort. We use an off-the-shelf gcc compiler to

cross-compile the benchmarks to the MIPS 1 platform. We use Cadence NCVer-

ilog to simulate our processor design running these binaries. Because we lack an

operating system on the processor, system calls (e.g., open, read, close, time) are

emulated by Programming Language Interface (PLI) routines. Dynamic mem-

ory allocation is implemented by simple code using preallocated static memory.

Most test programs in these benchmarks were used as is. The only excep-

tions are a few tests in OpenSSL that take a long time to simulate. To make

evaluation feasible on these tests, we replace long inputs with shorter ones.

We evaluate two security policies: nomix, a coarse-grained policy where the

entire program is labeled H, corresponding to the security policy targeted by

previous secure hardware design methods, and mixed, a fine-grained policy al-

lowing mixed H and L instructions, enabled by the new features of SecVerilog.

In the latter case, we use a simple policy to decide timing labels: for ciphers (e.g.,

AES, RSA), the encryption and decryption functions are marked as H; for secure

hash functions (e.g., MD4, SHA512), we pretend part of the input is secret, and

mark the hash functions on these inputs as H. Due to the coarse-grained label-

ing, nomix policy can only use the H partition of a cache while mixed policy can

use both the L and H partitions. Performance results are shown in Figure 5.5.

From the MiBench suite, only rijndael shows a noticeable performance over-

head of 19.6%. Overhead is reduced to 12.2% when the fine-grained model with

1The only benchmark omitted is PGP, which requires a full-featured OS.

155



 0.9

 1

 1.1

 1.2

 1.3

 1.4

blowfis
h

rijn
dael

SHA-1

N
o

rm
a

liz
e

d
 #

 c
lo

c
k
 c

y
c
le

s MiBench

baseline
nomix
mixed

AES

Blowfis
h

CAST5
DES

HMAC-M
D5

ID
EA

RC2
RC4

RC5

RIPEMD
MD2

MD4
MD5

MDC-2
RSA

SHA-0
SHA-1

SHA-256/224

SHA-512/384

Whirlp
ool

OpenSSL

baseline
nomix
mixed

Figure 5.5: Performance overhead of timing channel protection.

mixed labels is used. Overhead on OpenSSL ranges from 0.3% (Blowfish) to

34.9% (SHA-0) for the coarse-grained model, with an average of 21.0%. For the

fine-grained model, the overhead on OpenSSL ranges from −3.9% (CAST5) to

21.7% (DES), with an average of 8.8%. CAST5 runs faster with the partitioned

cache compared to the baseline because H instructions cannot evict frequently

used data in the L partition.

The results clearly show the benefit of fine-grained information flow control

within a single application. Most slowdown comes from the restriction that H

instructions cannot write to the L cache partition. Since H instructions are only a

subset of program instructions, allowing mixed H and L instructions in a single

program still improves the overall performance.

5.3 A Multi-Core PARC-tiny Processor

We implement a secure multi-core processor that allows mutually distrusting

security domains to run concurrently and share the hardware resources. We use

SecVerilog to verify the security of our processor, and the results suggest that

our timing channel protection mechanisms indeed remove timing channels.
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Figure 5.6: Architecture of the multi-core processor.

5.3.1 Baseline Architecture

Figure 5.6 shows the architecture of the multi-core processor. The processor has

four cores (P0 - P3), and each core has a private L1 instruction cache and data

cache. The private caches are 2-way set associative. The four cores also share a

L2 cache, which is divided into four cache banks (B0 - B3). Ring networks are

used to connect different levels of caches as well as the main memory. Each ring

network has four routers, which use Elastic Buffer (EB) [MBD09] flow control

algorithm to forward packets. The routing algorithm uses deterministic greedy

routing. Memory controllers are not implemented in this processor.

The processor uses an ISA called PARC-tiny, which is a subset of the PARCv2

instruction set developed by Batten et al. [PAR]. The list of instructions that

constitute PARC-tiny are listed in Table 5.4.
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Instruction type Instructions
Additive Arithmetic addiu, addu, subu

Binary Arithmetic and, or, slt, ori, sra, sll
Multiply/divide mul
Branch and jump bne, beq, jr, j, jal

Memory operation lw, sw
Others mfc0, mtc0, lui

Security-related setr, setw

Table 5.4: Complete ISA of the PARC-tiny processor.

5.3.2 Protection Mechanisms

We assume two mutually distrusting security domains are sharing this multi-

core processor, hence the security goal is to prevent any information flow be-

tween these two domains. Security Domain 0 (S D0) run on core 0 and core

1, while Security Domain 1 (S D1) run on core 2 and core 3. We assume the

two security domains can share read-only data (e.g., program code) but not

data that can be written. In this baseline architecture, the two security do-

mains can launch timing channel attacks by exploiting the interference in the

ring networks or the shared caches. Indeed, when we checked the RTL design

of this baseline architecture using SecVerilog, many illegal information flows

were identified by SecVerilog. To remove these illegal information flows, we

implemented the protection mechanisms described below.

Shared Cache

The shared cache is vulnerable to timing channel attacks due to the interference

between security domains. We adopt the partitioning scheme to remove cache

timing channels. Since the shared cache is already banked, we partition the
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cache at the granularity of cache banks. Specifically, S D0 only uses bank B0 and

B1 while S D1 only uses bank B2 and B3. We encode the security domain ID into

the destination field of network packets to implement this partitioning scheme.

Since we allow shared read-only data between the two security domains, we

duplicate these data if both domains fetch the shared data into the cache. Hence,

there could be two copies of the same data in different cache banks. However,

there is no coherence issue since these shared data are read-only.

Ring Network

We made two major modifications to the ring network. First, we use separate

input buffers for each security domain. This avoids the head-of-line blocking

interference between security domains. Second, we use temporal partitioning to

divide the bandwidth among security domains at a per-cycle basis. Specifically,

S D0 can use the routers and links only at even cycles while S D1 can only use

resources at odd cycles. The two modifications completely remove the network

interference between security domains.

Cache Coherence

We also implement a simple cache coherence protocol in this multi-core proces-

sor. The protocol, MI, is a directory-based protocol which only has two stable

states. M stands for “Modified”, which indicates one of the private caches owns

the data. I stands for “Invalid”, which indicates none of the private caches owns

the data. MI protocol is restrictive in that it does not allow a clean data to exist in

159



2-bit

P0 P1

0 1

Figure 5.7: A directory entry in bank 0.

multiple private caches. We use this protocol because it is simple to implement

and demonstrates the effectiveness of our protection mechanism.

Each bank of the shared cache has a directory that tracks the coherence state

of every cache entry in the bank. An entry of the directory has two bits, one

for each core that share this cache bank. As an example, Figure 5.7 shows a

directory entry in B0. Since B0 is shared by P0 and P1, each bit in the entry

represents the presence of the corresponding cache entry in the private cache of

P0 or P1. In this example, the cache entry exists in P1’s private cache. Note that

at most one of the two bits can be 1 because of MI protocol.

When a cache request arrives at the L2 cache bank, the cache controller first

checks the directory entry that corresponds to the address of the request. If

the data exists in another private cache, the cache controller sends an eviction

request to that private cache to take ownership of the data. After it receives the

response from the private cache, it sends the data to the cache that initiates the

original request and updates the directory entry. When an L2 eviction happens,

the L2 cache controller also sends an eviction request to the private cache that

owns the data so that the most updated data is written back to memory and the

cache bank remains inclusive.

Separate ring networks are used to send coherence requests and responses.

Similar to the ring network protection, we use temporal partitioning to elimi-

160



Module Name LOC
Pipeline 1472

Multiplier 470
L1 Cache 884
L2 Cache 929

Router 589
Ring Network 210

Memory to Network Adapter 128

Table 5.5: Lines of Code (LOC) for each processor component.

nate interference between security domains in the coherence networks. Since

private caches and L2 cache banks from different security domains do not com-

municate with each other in our protocol, there is no interference between secu-

rity domains at any cache controller.

5.3.3 SecVerilog Verification

The aforementioned protection mechanisms were implemented in this multi-

core processor. The components and LOC for each component are shown in

Table 5.5. To use SecVerilog to check the information flows of this multi-core

processor, we need to mark every signal with a security label. However, we

ran into an issue due to the lack of bit-level label support in current version of

SecVerilog. In SecVerilog, all the bits in a multi-bit signal share the same secu-

rity label. Similarly, all the elements in an array also share a single security la-

bel. This limitation makes it impossible for a signal to combine multiple signals

from different security domains and later decouple into separate signals. As

a result, separate signals need to be declared for each security domain, which

significantly increases the programming effort.
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Ring Network

D$ D$ D$ D$
req_msg

SD0 SD0 SD1 SD1

Figure 5.8: Illustrative example for bit-level label support.

As an illustrative example, consider the interface between caches and ring

networks in Figure 5.8. In a normal design without SecVerilog, the four cache

signals to the ring network can be combined into a single signal, req msg, before

entering the ring network module. As a benefit, the ring network module only

needs to declare a single input signal. Inside the ring network module, each

cache signal can be derived by picking different ranges of the input signal. It is

also possible to write f or loops to instantiate modules in a batch, as shown in

the code example below:

1 genvar i ;

2 generate

3 f o r ( i = 0 ; i < 4 ; i = i + 1) begin :

4 new module (

5 . input ( req msg [ i ] ) ,

6 . output ( out msg [ i ] )

7 ) ;

8 end

9 endgenerate

However, if SecVerilog is used, the four cache signals cannot be combined

because there is no way to specify the security label of req msg without bit-level
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Module Name LOC
Ring Network 120/210

MemNet 267/406
ProcCacheNet 783/1181

Table 5.6: Extra lines due to lack of bit-level label support.

label support. Hence, four input signals are required for the ring network, and

f or loops using the generate block is no longer possible. The lack of bit-level

label support increases the LOC of some modules significantly, as we show in

Table 5.6. The MemNet module instantiates a ring network module and two

memory to network adapter modules. The ProcCacheNet module is the top

module that instantiates the entire multi-core processor. The first number is

the extra lines due to the lack of bit-level label support, while the second num-

ber is the total number of lines in the module. As the results suggest, the extra

programming effort results from this limitation is significant, and support for

bit-level label is a needed feature in future versions of SecVerilog.

With the protection mechanisms implemented, the multi-core processor

passes SecVerilog verification, which proves the effectiveness of these protec-

tion schemes against timing channels. Currently, the multi-core processor does

not functionally work because I haven not finished the functional verification of

the cache coherence protocol due to its complexity. However, the interference

between security domains resulting from the MI protocol all happens in the ring

network, which SecVerilog did verify. The functional verification of the cache

coherence protocol remains to be the future work.

163



CHAPTER 6

RELATED WORK

This chapter describes previous work that is related to this thesis research.

Section 6.1 discusses previous work on possible timing channel attacks in both

software and hardware. Section 6.2 summarizes related work on timing channel

protection mechanisms. Finally, Section 6.3 describes previous work on verifi-

able hardware information flow control.

6.1 Timing Channel Attacks

6.1.1 Software Timing Channels

Software timing side channel attacks usually exploits security vulnerabilities

in the software to extract secret information through timing. Kocher [Koc96a]

designed a timing attack to extract secret keys of Diffie-Hellman [DH06] and

RSA [RSA78] cryptographic algorithms. The attack exploits the fact that the ex-

ecution time of modular reduction steps depends directly on the secret key. The

attack was believed to be defeated if Montgomery multiplication [Mon85] and

Chinese Remainder Theorem are used to implement Diffie-Hellman or RSA.

However, later work by Brumley et al. [BB03] proves that this enhanced im-

plementation is still vulnerable to timing channel attacks by demonstrating a

successful timing attack against OpenSSL, which uses RSA.

Several projects have looked into timing channel attacks in web applications.

Felten et al. [FS00] shows the timing variations of loading a webpage due to web

caching can reveal a user’s visit history, hence compromising users’ privacy. A
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similar timing attack was performed by exploiting CSS filters [KPJJ13]. Bortz et

al. [BB07] shows the response times of a website can reveal a user’s login status

or the size of a online shopping cart. Song et al. [SWT01] demonstrates that a

statistical analysis of keystroke timing derived from SSH can help predict users’

passwords.

Software covert channel attacks have also been studied, most in the context

of TCP/IP protocol. Griffin et al. [GGLT03] proposes a covert channel attack

by delaying packets and thus encoding information in the packet timestamp.

Cabuk et al. [CBS04] develops another covert channel attack by synchronizing

adversaries and encoding bits into the number of packets sent in each time in-

terval. Later, Sellke et al. [SWBS09] proposes another attack that uses packet

inter-transmission times to convey information, which achieves 2 to 5 times data

rate compared to Cabuk’s attack.

6.1.2 Hardware Timing Channels

Hardware timing channel attacks usually exploit the timing variations in hard-

ware resources as well as the interference between security domains that share

a hardware resource. For example, cache hits take much less time than cache

misses, and a program can evict the cache lines of another program in a shared

cache. We discuss related work on timing channel attacks on each hardware

component.
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Caches

Timing channel attacks on caches have been studied extensively in the liter-

ature. In prime-probe attacks [Per05, OST06, LYG+15], the attacker loads the

cache with its cache lines and measure which cache lines have been evicted by

the victim process that shares the cache. The attacker is able to extract secret key

from the victim’s access pattern. A similar attack that exploits interference be-

tween security domains is evict-time attack [OST06]. The attacker evicts the vic-

tim’s cache lines, and then triggers the victim’s cryptographic operations. The

attacker measure the execution time of the victim and can figure out whether

the evicted cache lines have been accessed by the victim. Interference within a

program can also leads to timing channels. A program’s cache lines can evict

each other, hence resulting in different execution times given different inputs.

Bernstein [Ber05] presents such an attack in experiments, which was further im-

proved and realized in real-world settings by Onur et al. [AScKK07]. All these

attacks are based on cache contention.

Another type of attacks relies on reuse of cache lines. Basically, if a data

block has been accessed before, it will be cached and the following accesses

to the same data block hit in the cache. One such attack is called flush-reload

attack [GBK11, YF14]. In this attack, an attacker and a victim may share some

data such as a common library. The attacker first flushes the shared data out of a

shared cache, then waits for the victim to run. After that, the attacker reloads the

shared data and can figure out which part of the shared data has been accessed

by the victim since accesses to these data result in cache hits. Another example

of reuse-based attacks is the cache collision attack [BM06], in which the victim
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reuses some of its cache lines based on the input, hence resulting in different

execution times given different inputs.

Besides attacks on data caches, previous work also demonstrates possible at-

tacks on instruction caches. Aciiçmez [Aci07] proposes a proof-of-concept tim-

ing attack on an instruction cache that allows the attacker to recover the execu-

tion flow of a victim program. This attack was further refined in [ABG10] and

carried out in real-world settings.

Previous work also demonstrates the feasibility of cache timing channel at-

tacks in cloud computing environment. Ristenpart et al. [RTSS09] proposes an

attack that can reveal the timing of keystrokes typed in a console from a virtual

machine in Amazon EC2 servers. Later, Zhang et al. [ZJRR12] develops a more

fine-grained cross-VM attack that allows an attacker to extract cryptographic

keys from a co-resident VM.

On-Chip Networks

Our work [WS12] identifies possible timing channels in on-chip networks. We

demonstrate a simple RSA attack example that exploits interference between

security domains in the shared on-chip network (see Section 2.1.2).

Memory

Several projects have looked into timing channels in main memory. Wu et

al. [WXW12] discover the memory bus locking due to atomic instructions on

x86 platforms can be exploited to create covert channels across the system. Our
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work [WFS14] identifies possible timing channels in a shared memory con-

troller. We demonstrate a side-channel attack example on RSA that exploits

the interference in memory scheduling among security domains. By manipu-

lating the number of memory accesses, a covert channel attack is also possible

to communicate unauthorized information between colluding adversaries. Tim-

ing channels have also been explored in the context of ORAM [GO96]. Fletchery

et al. [FRY+14] points out that when memory accesses are issued may also leak

information in ORAM.

Another line of work on memory timing channel attacks exploits memory

deduplication, which is a technique to reduce memory footprint by combin-

ing identical memory pages. Write access to these deduplicated pages leads to

a page fault, which takes much longer to process than write access to normal

pages. Suzaki et al. [SIYA11] proposed an attack that can determine whether

specific applications are running in a co-located virtual machine in the cloud.

Owen et al. [OW11] demonstrated that it is possible to efficiently fingerprint

operating systems of co-resident virtual machines using memory deduplication

attacks. Attackers can use OS fingerprinting to learn the type and version of an

operating system so that they can launch attacks that are specific to the target

OS. Gruss et al. [GBM15] presented a page deduplication attack in sandboxed

JavaScript, which allows a remote attacker to collect private information such

as whether a program or website is currently opened by a user.

Others

Timing channel attacks have been studied in other microarchitectural compo-

nents in modern processors. Wang et al. [WL06] discovers that processor ar-
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chitecture features such as simultaneous multithreading (SMT) can be used to

create covert channels. For example, a thread can manipulate the use of func-

tion units to delay another thread and encode the information using the delay.

Onur et al. [AKS06, AKS07] proposes timing channel attacks that can extract the

secret key of a RSA process by analyzing the CPU’s branch predictor states.

6.2 Timing Channel Protection

6.2.1 Software Approaches

Many software solutions rely on rewriting software to defend against known

timing channel attacks. For example, to defend against timing channel attacks

against AES, previous work [OST06, BGNS06] proposes using mathematical op-

erations to replace AES table lookups. One problem with this approach is that

the solution is ad hoc, i.e., the software is rewritten to defend against a specific

attack. Hence, new attacks may be possible after the software is rewritten. For

instance, RSA implementation using Montgomery multiplication and Chinese

Remainder Theorem was believed to be secure against timing channel attacks,

but was proven wrong by later work [BB03]. Furthermore, the performance of

the new software implementation can be very high (2X to 4X slower than the

original implementation [BGNS06]).

Another software approach to timing channel mitigation focuses on manip-

ulating the time that an attacker can observe. One such scheme [GH06] is to

add random delays to the execution time of various operations, which reduces

the bandwidth of timing channel attacks. However, random noise does not
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eliminate timing channels, since it can be removed by large number of sam-

ples. Askarov [AZM10] proposes to use predictive mitigation mechanisms to

bound the information leakage of timing channels. The response time observed

by the attacker increases exponentially if it fail to meet an expected response

time. Later, Zhang [ZAM11] generalizes predictive mitigation to take advan-

tage of knowledge about the system being protected, significantly improving

the tradeoff between security and performance.

Several projects have looked into applying language-based techniques to

timing channel protection. Agat [Aga00] proposes a type system that detects

timing channels and uses program transformations to remove timing variations.

However, this work sacrifices language expressiveness and does not consider

timing channels that is caused by hardware features such as a cache. Zhang

et al. [ZAM12] proposes a language-based technique to control and mitigate

timing channels. In this approach, each instruction of the software is marked

with a timing label and a write access label. This approach improves the lan-

guage expressiveness and deals with the underlying hardware features through

the labels. As another defense mechanism, Coppens et al. [CVBS09] proposes to

use program transformations in a compiler backend to remove key-dependent

control flows. They demonstrate that their approach is effective in defending

against timing side-channel attacks on modern x86 processors.

Other software protection schemes involve modifications to an OS or a hy-

pervisor to prevent some known attacks. For example, Zhang et al. [SXZ13]

proposes a hypervisor-based solution that restricts the use of atomic in-

structions and defeats the covert channel attacks through memory bus lock-

ing [WXW12].
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6.2.2 Hardware Approaches

Hardware solutions remove timing channels by making microarchitecture

changes that eliminate interference between security domains or obfuscate in-

formation being observed by an attacker. We discuss related work on hardware

protection schemes for each hardware component.

Caches

Protections for caches can be generally categorized into two approaches, parti-

tioning approach and randomization approach. Page [Pag05] proposes to use

static cache partitioning to eliminate cache interference between different secu-

rity domains. However, static cache partitioning often incurs high performance

overhead. Our work, SecDCP [WFZ+16], utilizes the asymmetric property of

a security policy to enable dynamic cache partitioning while still maintaining

the security guarantee. Another work that follows the partitioning approach is

Partition-Locked cache (PLcache) [WL07], which locks the security-critical data

in the cache and disallows other data to evict them. However, as pointed out by

later work [KASZ08, KASZ09], PLcache still has security vulnerabilities unless

the security-critical data is preloaded into the cache without being noticed by

the attacker.

Wang et al. [WL07, WL08] proposes Random Permutation cache (RPcache)

that tries to eliminate interference through randomization. The basic idea is

to randomize the mapping between addresses and cache lines so that an at-

tacker does not know which address of the victim program causes the eviction

of the attacker’s cache lines. Unfortunately, it does not defend against a covert
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channel attack, which encodes information using the number of cache misses.

RPcache also cannot defend against cache collision attacks [KASZ08, KASZ09],

which are based on the reuse of cache lines. To defend against cache collision

attacks, Liu et al. [LL14] proposes random fill cache architecture. Random fill

cache removes the demand fetch feature of conventional cache and replace it

with randomized fetch. Random fill cache requires security-critical data to be

in continuous memory regions for security. Random fill cache can also incur

significant performance overhead because many unuseful cache lines may be

fetched into the cache.

On-Chip Networks

Our work [WS12] proposes to use Temporal Network Partitioning (see Sec-

tion 2.2) to eliminate the interference between different security domains.

A priority-based protection, RPSL (see Section 2.3), was also developed to

improve the performance by providing uni-directional protection. Later,

SurfNoC [WGO+13] was proposed to improve the performance of TNP by more

efficient network scheduling that avoids unnecessary waiting delays in each

router.

Memory Controllers

Timing channel protections for memory controllers are more difficult than on-

chip networks because of the complexity of memory scheduling. We propose

Temporal Partitioning (TP, see Section 4.2) to remove timing channels in a

shared memory controller. TP introduces the “dead time” to completely remove

172



the interference between security domains, but dead time also introduces sig-

nificant performance overhead. Shafiee et al. [SGS+15] proposes to improve the

performance of TP by using spatial partitioning such as rank partitioning. Map-

ping security domains to different ranks significantly reduces the dead time,

hence improving the system performance. However, spatial partitioning limits

the number of security domains that can be supported simultaneously and leads

to high memory fragmentation. To improve the performance of TP without

spatial partitioning, we propose SecMC-NI (see Section 4.3), which interleaves

requests from different banks and ranks to construct an efficient schedule. We

then propose SecMC-Bound (see Section 4.4) that further improves performance

by trading off security. Previous work also looked into performance improve-

ment by providing uni-directional protection. Ferraiuolo et al. [FWZ+16] pro-

pose Lattice Priority Scheduling (LPS) scheme that enables dynamic scheduling

of memory requests without breaking the security guarantees.

Fuzzy Time

Previous work has also looked into timing channel protection by obfuscating

an attacker’s notion of time. Hu [Hu92] proposes to reduce the bandwidths

of covert timing channels by making all clocks available to a process noisy,

although the noise may be filtered by large number of samples. Martin et

al. [MDS12] propose to add random offset and delay to the RDTSC instruction

in x86, which returns the current value of the timestamp counter (TSC) regis-

ter. Their method reduces the resolution of an attacker’s timing measurement

so that the attacker cannot distinguish microarchitectural events (e.g., cache hits
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vs cache misses). However, this approach can still be vulnerable to covert chan-

nel attacks, which uses the number of cache misses to encode information.

6.3 Verifiable Hardware Information Flow Control

Several projects have looked into verifying the information flow in hardware.

GLIFT [TWM+09] tracks the information flow at the logic-gate level by insert-

ing extra tracking logic into the hardware. However, GLIFT only detects infor-

mation flow violations at run time. Hence, the hardware is already fabricated

when a violation is detected, resulting in high cost. Because of the extra tracking

logic, it also incurs high overheads in area, power and performance. Execution

Lease [TLW+09] enforces information flow policies by restricting the time and

address space for a region of execution. The design is implemented with GLIFT,

but turns out to be very restrictive since it does not naturally support hard-

ware features that have timing variabilities (e.g., caches, pipelining). Tiwari et

al. [TOL+11] improves Execution Lease by designing an architectural skeleton

that can govern the information flow of the entire system. In their design, in-

formation flow is statically checked by enumerating all possible states of their

star − logic through gate-level simulations, an approach that is unlikely to scale

to large designs.

Previous work has also looked into language techniques to verify hardware

information flow. Caisson [LTO+11] is a Hardware Description Language (HDL)

that can statically verify the information flow of hardware. However, since

Caisson uses a purely static type system, all registers must be duplicated for

different security domains, leading to high area and performance overhead. It
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also prevents fine-grained sharing of wires even if the sharing is secure. Sap-

per [LKO+14] is another language that automatically generates and inserts dy-

namic security checks into the Verilog hardware design. These checks ensure

that security violations will be revealed as functional bugs during testing so

that designers can fix any illegal information flow. However, security vulnera-

bilities that are not caught during the testing phase can cause functional prob-

lem in hardware deployment. SecVerilog [ZWSM15] verifies the hardware at

design time by marking every signal with security labels. The dependent types

introduced in SecVerilog allow more flexible resource sharing between different

security domains. However, to handle the implicit declassification feature of

SecVerilog, hardware designers need to specify the value of a register explicitly

when the label of the register changes from a higher security label to a lower

one.
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CHAPTER 7

CONCLUSION

7.1 Summary

This thesis explored and addressed some of the timing channel attacks in mod-

ern multi-core processors. Possible timing channel attacks were identified

in shared hardware resources including on-chip networks and memory con-

trollers. Secure hardware designs were proposed to defeat some of the known

timing channel attacks. Finally, we verified that the timing channels have been

indeed eliminated in RTL by our protection schemes using SecVerilog.

In Chapter 2, we described our discovery of timing channel attacks on the

shared on-chip networks. Temporal Network Partitioning (TNP) was proposed

to defeat the attacks. Furthermore, a priority-based protection scheme called

RPSL was developed to improve the performance by providing uni-directional

protection. In Chapter 3, we summarized previous timing channel attacks on

caches and also pointed out the number of cache accesses can be used as a

covert channel. We proposed SecDCP, a scheme that allows secure dynamic

cache partitioning to defend against cache timing channel attacks, while signif-

icantly improving the performance of static partitioning. To support more se-

curity domains, another protection scheme based on a high-associativity cache

(ZCache) was proposed. One observation was that even cache line relocations

between security domains can lead to new timing channel attacks. We also came

up with a couple of secure cache designs that support the language-based pro-

tection. One of the designs (DirtyCache) was implemented in RTL and verified

by SecVerilog in Chapter 5. In Chapter 4, we described our findings on possible
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timing channel attacks on a shared memory controller. Temporal Partitioning

(TP) was proposed as an initial protection scheme that eliminates interference

between different security domains by static scheduling. To reduce the perfor-

mance overhead, we proposed another secure memory controller, SecMC-NI,

which constructs an efficient schedule of memory requests by interleaving re-

quests from different memory banks and ranks. To further improve the perfor-

mance, we designed SecMC-Bound, which allows users to trade off security for

higher performance. Security analysis on SecMC-Bound provides a bound on

information leakage rate. Finally in Chapter 5, we built two secure processors in

RTL and used SecVerilog to verify that both of them are free of timing channels.

7.2 Future Directions

7.2.1 Efficient Timing Channel Protections

Although many timing channel protection schemes have been proposed in re-

cent years, these protections usually come with either high performance cost or

inflexibility. For example, SecMC-NI only achieves 57% performance of an in-

secure baseline. Rank partitioning can reach 80% of the baseline’s performance,

but puts restrictions on the use of DRAM memory. To summarize, there is still

a significant performance gap between timing channel protection schemes and

insecure designs, and this gap will only get larger as we scale the number of

security domains in future computing systems.

Hence, one interesting future direction is to close this performance gap with

more efficient timing channel protections. To this end, we already explored
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some techniques that improve performance by providing uni-directional protec-

tions. However, there is still more work to be done. For example, we proposed a

ZCache-based protection scheme (see Section 3.5) to support more security do-

mains, but only allowing cache line relocations within the same security domain

is very restrictive and hurts performance.

One approach to improve the efficiency of timing channel protections is trad-

ing off security for performance, as we did in SecMC-Bound (see Section 4.4).

One challenge in this approach is deriving a tight information leakage bound

that is useful in practice. Theoretical information leakage analysis in SecMC-

Bound is still quite conservative and derives an leakage rate of several hun-

dred bits per second, which is much higher than the threshold suggested by the

Trusted Computer System Evaluation Criteria (the orange book [oD85]). Once a

tight information leakage bound is found, another interesting research direction

would be calculating the leakage bound at run time efficiently in hardware and

enforcing the leakage to be lower than some user-specified limit.

7.2.2 QoS Support with Timing Channel Protections

Many QoS techniques [DK14, DK13] have been proposed to provide certain per-

formance guarantees (e.g., target IPC) for concurrently running programs that

share hardware resources such as caches and memory. However, most QoS tech-

niques do not consider the threat of timing channels. As a result, current QoS

techniques are vulnerable to timing channel attacks since the resource allocation

decisions can reveal confidential information about a program. One interesting

research direction is then to design schemes that provides both QoS guarantees
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and timing channel protection. For example, in SecDCP (see Section 3.4), the

cache can reserve a minimum number of cache ways for each security domain

to fulfill their QoS requirements while dynamically and securely allocating the

rest to achieve higher performance. A challenge in this research direction is

how to meet the QoS requirements without breaking the security guarantee.

Since subtle interference may lead to timing channel attacks, care must be taken

when deciding resource allocation to meet QoS requirements.

7.2.3 Verifiable Information Flow Control in Hardware

Although several tools have been developed to verify the information flow con-

trol in hardware, these tools still have their limitations. Thanks to the dependent

type system, SecVerilog allows flexible and verifiable hardware designs. How-

ever, the implicit declassification in SecVerilog requires the designer to explicitly

specify the value of a register when its label changes from a higher security la-

bel to a lower one. Moreover, current SecVerilog does not support fine-grained

labels, which means a vector of bits or an array of signals only has a single label.

To assign different labels to different elements in an array, the array must be

decoupled into multiple signals, which is inconvenient for hardware designers.

Type inference is currently unsupported in SecVerilog as well. To summarize,

a few desired features are still to be added into current tools of hardware infor-

mation flow verification to make them more flexible and usable.
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